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Introduction

Note: This is the online version of my progress report, compiled March 13, 2012,
which differs slightly from the version I handed in May 27, 2011. Feel very free
to comment on the contents and to write me about misprints and mistakes. The
newest version of this document is available at http://home.imf.au.dk/pred.

This progress report is the culmination of my first two years as a PhD scholar
at Aarhus Graduate School of Science, studying under supervision of Jørgen El-
legaard Andersen at the Centre for Quantum Geometry of Moduli Spaces. In
essence, it accounts for the progress of my PhD project, entitled Quantum rep-
resentations of mapping class groups, by introducing much of the relevant back-
ground material that I have picked up during these two years, and by explaining
concretely in which direction the project is heading.

The ultimate aim of the project is to combine techniques from the two some-
what disjoint areas of mathematics that are gauge theory and quantum topology,
and as such my attempt to create a self-contained introduction to both – as well
as to my own work in progress – has resulted in this perhaps rather lengthy
document. Yet, it is naive to provide a full treatment of the subjects at hand at
any reasonable1 length, and I should note for anyone picking up this progress re-
port that some prior knowledge of knot and surgery theory, complex differential
geometry, and the theory of vector bundles on manifolds will come in handy.

That being said, it is my hope that the progress report provides all necessary
references for obtaining a further understanding of the theory, itself outlining
the relevant mathematical context and explaining the notions central for under-
standing the present PhD project.

The report is structured as follows: It is split into four chapters, the first
three of which contain known results and constructions relevant for our own
studies. New results have all been collected in the final chapter.

In Chapter 1, we give an elementary description of the mapping class groups
of surfaces. The Dehn–Lickorish theorem tells us that these groups are generated
by certain mapping classes called Dehn twists, which will be of particular im-
portance to us in the final chapter of the report. These will be discussed in more
detail, and we review several of their algebraic properties. We end the chapter
by introducing a classification of mapping classes due to Nielsen and Thurston
which will form the basis of one part of the project.

We begin Chapter 2 by giving a brief outline of gauge theory and the
study of connections in principal bundles over manifolds, mainly in order to fix
the notation used for later sections. We then turn to the concept of geometric

1“Reasonable” referring here to the AGSoS progress report guide lines.
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ii INTRODUCTION

quantization and discuss in particular the part of it known as prequantization.
Whereas prequantization can be discussed in the general framework of symplectic
geometry, we will be focussing primarily on the example of the moduli space of
flat SU(n)-connections in a principal bundle over a surface and explain how this
space is prequantizable through a discussion of Chern–Simons theory.

Chapter 3 contains the main theoretical bulk of the report. We begin by
very briefly relating the project at hand to mathematical physics and topological
quantum field theory. The latter term is due to Witten who first constructed such
a theory using mathematically ill-defined path integrals. From a mathematical
point of view, this is of course a major defect, which mathematicians have sought
to remedy for decades.

A topological quantum field theory (in 2 + 1 dimensions) consists, in essence,
of a topological invariant of 3-manifolds which from a physical point of view arises
as the partition function of a quantum field theory. Furthermore, it immediately
gives rise to finite-dimensional representations of mapping class groups, which
are exactly the quantum representations we seek to study.

We provide an axiomatic mathematically precise description of topological
quantum field theory and turn to two concrete constructions of such. The first
of these is due to Reshetikhin and Turaev who – using quantum groups and
the method of surgery along links in 3-manifolds – gave the historically first
mathematical definition of the desired 3-manifold invariant. We will see how
this fits into the general theory of modular categories. The second construction
we will describe is due to Blanchet, Habegger, Masbaum and Vogel and is more
combinatorial in nature and more suited for our purposes; concrete calculations
of the quantum representations arising from this theory turn out to be very
feasible, and so we describe various features of the theory in greater detail.

Finally, in Chapter 4, we collect the various constructions made throughout
the report and explain in detail how to construct from them quantum represen-
tations of mapping class groups. As a warm-up, we describe some of the main
properties of the representations and put up several unsolved conjectures involv-
ing the algebraic properties of the representations as well as their connection
with geometric quantization of moduli spaces and mathematical physics. Most
of our attention is devoted to understanding the representations of Dehn twists
on a torus, the Chern–Simons theory of the associated mapping torus, its asso-
ciated moduli space and the semi-classical behaviour of the partition function.
Main new results are Proposition 4.7, Theorem 4.20, Corollary 4.22, and Propo-
sition 4.24. Most of what is contained in this chapter is work having only just
begun, and we end the report by giving a breakdown of future perspectives and
expectations for the PhD project.

Let me end this introduction by first of all thanking my supervisor Jørgen
Ellegaard Andersen for presenting to me all of the problems discussed in the
report as well as for being a great source of motivation and keeping up with all
of the questions and problems I have come across in the process. Let me also
thank all of my fellow students at the Centre for Quantum Geometry for Moduli
Spaces for many good discussions on our various projects, and in particular Jens-
Jakob Kratmann Nissen and Jens Kristian Egsgaard for carefully proofreading
this report.

Aarhus, May 2011 Søren Fuglede Jørgensen
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Chapter 1
Mapping class groups

1.1 Definition and preliminary remarks
The main algebraic object under scrutiny in this progress report is the mapping
class group of a surface. Very roughly, one thinks of the mapping class group as
the group of symmetries of a given surface. Let Σ = Σg,n be a compact surface of
genus g ≥ 0 with n ≥ 0 boundary components. Let Homeo(Σ, ∂Σ) be the group
of orientation-preserving homeomorphisms restricting to the identity on ∂Σ, and
let Homeo0(Σ, ∂Σ) denote the normal subgroup of those homeomorphisms that
are isotopic (i.e. homotopic through homeomorphisms relative to the boundary)
to the identity. The mapping class group of Σ is the quotient

Γ(Σ) = Homeo(Σ, ∂Σ)/Homeo0(Σ, ∂Σ),

or, equivalently, Γ(Σ) = π0(Homeo(Σ, ∂Σ)). The class of a homeomorphism
in Γ(Σ) is called its mapping class. Obviously, homeomorphic surfaces have
isomorphic mapping class groups, and we will often simply write Γg,n = Γ(Σ).
Also, we will write Γg = Γg,0.

Several variations on this theme exist. It is common to define the mapping
class group of a surface as the group π0(Diff(Σ, ∂Σ)) of orientation-preserving
diffeomorphisms of Σ rather than homeomorphisms. It is a non-trivial fact that
any homeomorphism is isotopic to a diffeomorphism, and that isotopy can be
replaced by smooth isotopy, so we obtain an isomorphic group, and we will use
the two interchangeably.

We will also occasionally be considering surfaces Σmg,n with m ≥ 0 punctures,
i.e. m points removed from the interior of the surface, and consider homeomor-
phisms of the resulting non-compact surface. Equivalently, one could consider
the surface with a set of m ≥ 0 marked points, and require that homeomor-
phisms and isotopies fix this set. The resulting mapping class group will be
denoted Γmg,n. Similarly, some definitions ease the condition on the behaviour on
the boundary and consider instead homeomorphisms and isotopies preserving
the boundary setwise rather than pointwise.

1.2 Examples and generators
A guiding example in what follows will be the closed torus Σ1. Homeomor-
phisms of the torus act by determinant 1 automorphisms on the first homology

1



2 CHAPTER 1. MAPPING CLASS GROUPS

H1(Σ1,Z) ∼= Z2 of the torus. In fact, any elementM of SL(2,Z) defines a homeo-
morphism of the torus, viewed as the quotient R2/Z2, whose action on homology
is exactly M . Likewise, it follows from general K(G, 1) theory, that any such
homomorphism arises from a (based) map on the torus, unique up to homotopy.
We thus obtain the following (and refer to [FM11, Thm. 2.5] for the details).

Theorem 1.1. The homomorphism Γ1 → SL(2,Z) given by the action on ho-
mology is an isomorphism.

Remark 1.2. One might conjecture that general mapping class groups are linear,
i.e. admit injective representations, as in the torus case. The case of Γ2 was han-
dled in [BB01], where an explicit 64-dimensional representation is constructed,
but the same question for higher genus (closed) surfaces is still open.

1.2.1 Dehn twists
The most important class of examples of mapping classes for our purpose are
the Dehn twists about simple closed curves, which we intuitively think of as ob-
tained by cutting the surface along a curve, giving one of the resulting boundary
components a 2π left twist, and gluing the boundary components back together
(see Figure 1.1 for a Dehn twist on the closed torus). More precisely, consider
the annulus A = S1 × [0, 1] considered as an oriented surface in R2 via the map
(θ, r) 7→ (θ, r + 1) with the orientation induced by the orientation of R2. Define
a map t : A→ A by

t(θ, r) = (θ + 2πr, r),

as illustrated in Figure 1.2. Now let γ be a simple closed curve in an oriented
surface Σ, and let N be a regular neighbourhood of γ. Choose an orientation-
preserving homeomorphism ϕ : A → N , and define the Dehn twist about γ,
denoted tγ : Σ → Σ, by tγ = ϕ ◦ t ◦ ϕ−1 on N , and tγ = id on Σ \ N . This
defines an orientation-preserving homeomorphism on Σ. The mapping class of tγ
depends neither on the choice of regular neighbourhood, nor the homeomorphism
ϕ. Furthermore, the mapping class is determined by the isotopy class of γ. If
a is the isotopy class of γ, we write ta for the resulting mapping class. We will
often make a slight abuse of notation, writing tγ for the mapping class as well.

Figure 1.1: The action on two simple closed curves in a torus of the Dehn twist
about a meridian.
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Figure 1.2: The action of the twist map t : A → A on a horizontal line in the
annulus.

Remark 1.3. What we defined above is really a left Dehn twist. Similarly, one
could have used the map t : A → A given by t(θ, r) = (θ − 2πr, r) to obtain
instead a right Dehn twist. The mapping class of the resulting homeomorphism
would be the inverse to the one obtained above.

The importance of Dehn twists stems from the fact that they generate the
mapping class groups. Before discussing exactly how, we note some of their
algebraic properties. In the following, let Σ be any surface. The intersection
number, denoted i(a, b), between two isotopy classes of curves a and b in Σ, is
the minimal number of intersections between representative curves. A simple
closed curve curve in Σ is called essential, if it is not homotopic to a point, a
boundary component or a marked point. We will need the following non-trivial
fact. For a proof, see [FM11, Prop. 3.2].

Proposition 1.4. Let a and b be isotopy classes of essential closed curves, and
let k ∈ Z. Then i(tka(b), b) = |k|i(a, b)2.

Note that a Dehn twist about a simple closed curve homotopic to a point is
trivial in the mapping class group. In general, however, Dehn twists are non-
trivial:

Corollary 1.5. Let a be the isotopy class of a simple closed curve α not homo-
topic to a point or a puncture in Σ. Then ta has infinite order.

Proof. By Proposition 1.4, it is enough to find an isotopy class b, such that
i(a, b) > 0. Assume first that Σ has no boundary components. Then this is
possible by the so-called change of coordinates principle: It follows from the
classification of surfaces that there is an orientation-preserving homeomorphism
of Σ taking one simple closed curve to another if and only if the two results
of cutting the surface along the two curves will be homeomorphic surfaces. In
other words, up to homeomorphism there is only one non-separating curve and
finitely many separating ones, and we may assume that α is one of the curves
in Fig. 1.3 (the separating curve might of course enclose more holes, punctures
or boundary components). In both cases, the existence of the isotopy class b is
obvious. In the case where Σ has boundary, using the same method as above,
it remains to prove that Dehn twists about boundary components have infinite
order – this is proved by a similar argument.

In the following, let Γ be the mapping class group of the surface Σ, and let
a and b denote isotopy classes of simple closed curves in Σ.

Lemma 1.6. If ta = tb, then a = b.
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Figure 1.3: Using the change of coordinate principle to simplify α.

Proof. Assume that a 6= b. Using the change of coordinates principle as above,
considering all the various cases, it is possible to find an isotopy class c, such
that i(a, c) = 0, i(b, c) 6= 0. By Proposition 1.4,

i(ta(c), c) = i(a, c)2 = 0 6= i(b, c)2 = i(tb(c), c),

so ta(c) 6= tb(c), and ta 6= tb.

Lemma 1.7. For f ∈ Γ(Σ), we have tf(a) = ftaf
−1.

Note here that when writing a product of mapping classes, we always apply
them from right to left.

Proof. Let ϕ be a representative of f , and let γ a representative of a. Then ϕ−1

takes a regular neighbourhood of ϕ(γ) to a regular neighbourhood of γ. Using
this neighbourhood to define tγ , we obtain tϕ(γ) = ϕtγϕ

−1.

Lemma 1.8. Dehn twists about two simple closed curves commute if and only
if the isotopy classes of the curves have zero intersection number.

Proof. That Dehn twists about non-intersecting curves commute is obvious. It
follows from Lemma 1.6 and Lemma 1.7 that a given mapping class f commutes
with a Dehn twist ta, if and only if f fixes a. Thus, if tatb = tbta for isotopy
classes a and b of simple closed curves, we obtain ta(b) = b, and by Proposition 1.4
i(a, b)2 = i(ta(b), b) = 0.

Lemma 1.9 (Braid relation). If i(a, b) = 1 for isotopy classes of simple closed
curves a and b, then tatbta = tbtatb.

Proof. We prove first that tatb(a) = b. By using the change of coordinates
principle, we assume that a and b are represented by curves α and β as in
Figure 1.4 for which the equation is seen to hold by the sequence of mappings
in the figure. It follows that ttatb(a) = tb, and from Lemma 1.7, we obtain
(tatb)ta(tatb)−1 = tb.

We consider now the effect on the mapping class group of a surface when
adding boundary components to it. When Σ is a topologically closed subsurface
of Σ′, we define a homomorphism Γ(Σ) → Γ(Σ′) as follows: For a homeomor-
phism ϕ ∈ Homeo(Σ, ∂Σ) representing a mapping class f ∈ Γ(Σ), we extend ϕ
to a homeomorphism ϕ ∈ Homeo(Σ′, ∂Σ′) by letting it act identically on Σ′ \Σ.
The induced map Γ(Σ)→ Γ(Σ′) is well-defined.

In the special case where Σ′ is obtained from Σ by capping a boundary
component, that is, Σ′ \ Σ is a once-punctured disk with a boundary curve β,
the resulting homomorphism Γ(Σ)→ Γ(Σ′) fits into a short exact sequence

1→ 〈tβ〉 → Γ(Σ)→ Γ(Σ′)→ 1.
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Figure 1.4: The curves α and β, and the equation tαtβ(α) = β. The last arrow
is a simple isotopy.

As an example, we consider again the torus. Using the so-called Alexander
trick, one can prove that the mapping class group of the once punctured torus
Σ1

1,0 is once again given by its action on homology, so Γ(Σ1
1,0) ∼= SL(2,Z). As

above, the mapping class group of the torus with one boundary component Σ1,1
thus fits into the exact sequence

1→ Z→ Γ(Σ1,1)→ Γ(Σ1
1,0)→ 1.

We can describe this mapping class group as follows: Recall that SL(2,Z) has a
presentation SL(2,Z) ∼= 〈a, b | aba = bab, (ab)6〉, explicitly given by(

1 1
0 1

)
7→ a,

(
1 0
−1 1

)
7→ b.

Consider the braid group on 3 strands, B3 ∼= 〈a, b | aba = bab〉. From the presen-
tations, we get a homomorphism B3 → SL(2,Z) with kernel 〈(ab)6〉 ∼= Z. There
are maps SL(2,Z) → Γ(Σ1,0), SL(2,Z) → Γ(Σ1

1,0), and B3 → Γ(Σ1,1) given by
mapping the generators a, b to Dehn twists about meridian and longitude curves
respectively. These fit into the commutative diagram

1 // Z //

∼=
��

B3

��

// SL(2,Z)

∼=
��

// 1

1 // Z // Γ(Σ1,1) // Γ(Σ1
1,0) // 1.

Using the five-lemma, we obtain the following result:

Proposition 1.10. The mapping class group of a torus with one boundary com-
ponent is Γ(Σ1,1) ∼= B3.

1.2.2 Generators of mapping class groups
In the examples above, we saw that the mapping class groups could be generated
by particular Dehn twists in the case of the closed torus, the once punctured torus
and the torus with one boundary component. The case of the closed torus is a
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special case of the Dehn–Lickorish theorem (sometimes also called the Lickorish
twist theorem).

Theorem 1.11 (Dehn–Lickorish). For g ≥ 1, the group Γg is generated by 3g−1
Dehn twists about nonseparating simple closed curves (see Figure 1.5).

Figure 1.5: The 3g − 1 curves appearing in the Dehn–Lickorish theorem in the
case g = 3.

In fact, Humphries [Hum79] has proved that the minimal (and realizable)
number of Dehn twists required to generate Γg, g > 1, is 2g + 1. In the case
where the surface has boundary components, the picture changes but we remark
that Dehn twists still generate the mapping class group.

Since we will need it later, we note that Γ2 has the following presentation,
due to Birman and Hilden, [BH73]:

Γ2 ∼= 〈a1, . . . , a5 |aiaj = ajai, |i− j| ≥ 2,
aiai+1ai = ai+1aiai+1,

(a1a2a3a4a5)5 = 1,
(a1 . . . a5a5 . . . a1)2 = 1,
[a1 . . . a5a5 . . . a1, a1] = 1, 〉

As in the torus case, we can realize the generators a1, . . . , a5 as Dehn twists
about the five curves shown in Figure 1.6.

Figure 1.6: The Dehn twists generating Γ2.

1.2.3 Finite order elements
Whereas non-trivial Dehn twists have infinite order in the mapping class group,
we will also need to discuss finite order mapping classes. In the case of the torus,
Γ1 ∼= SL(2,Z), and examples of order 2, 3, 4, and 6 are(

−1 0
0 −1

)
,

(
0 −1
1 −1

)
,

(
0 −1
1 0

)
,

(
0 1
−1 1

)
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respectively. An example of an order 2 mapping class in Γ2 is given by the
element a1 . . . a5a5 . . . a1 described above. More generally, the mapping class
of the homeomorphism obtained by an angle π rotation about the axis shown
in Figure 1.7 has order 2 and is called hyperelliptic involution Hg. In fact,

Figure 1.7: The hyperelliptic involution as a rotation of a surface.

hyperelliptic involutions are the only possible central elements of mapping class
groups of closed surfaces. We have the following.

Theorem 1.12. The center Z(Γg) of Γg is isomorphic to Z2 for g = 1, 2 and
trivial otherwise.

While we will not go into all details of the proof of this, one way of under-
standing this is as follows: As in the proof of Lemma 1.8, any central element
will fix the isotopy class of every simple closed curve. A combinatorial argument
using the so-called Alexander method shows that no non-trivial elements can do
this when g ≥ 3 and leaves H1 and H2 as the only possible central elements in
Γ1 and Γ2. To prove that these two elements are in fact central, it suffices to
check that they fix the isotopy classes of the curves giving the Dehn twists used
to generate the respective mapping class groups in Theorem 1.11.

This theorem is no longer true when the surface is not closed. For example,
the Dehn twist about a boundary component will always be central.

1.3 The Nielsen–Thurston classification
The examples considered above are in some sense the simplest. Finite order
mapping classes can be realized by homeomorphisms of finite order, and while
Dehn twists have infinite order, they will still have a simple action on certain
curves (namely they fix the isotopy class of the curve used to define them). We
end this chapter with a brief discussion of the Nielsen–Thurston classification
and in particular we discuss the notion of a pseudo-Anosov homeomorphism.
One of the main goals of the project at hand will be to analyze the behaviour of
quantum representations under the trichotomy of the classification.

To define a pseudo-Anosov homeomorphism we need the notion of a trans-
verse measure in a singular foliation.

Definition 1.13. A singular foliation on a surface Σ is a decomposition of the
surface into a disjoint union of leaves such that all but finitely many singular
points in Σ will have smooth charts U → R2 taking leaves to horizontal lines. The
singular points have smooth charts taking leaves to k-prong singularities as in
Figure 1.8. Punctures are allowed to have 1-prong singularities as in Figure 1.9.
We require also that every boundary component has at least one singularity, and
that boundary components are unions of leaves connecting the singularities. Two
singular foliations are called transverse if they have the same singular points and
have transverse leaves at all other points (see Figure 1.10).
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Figure 1.8: The k-prong singularities for k = 3, 4.

Figure 1.9: The 1-prong singularity for a punctured surface.

Figure 1.10: A pair of transverse singular foliations.

Definition 1.14. Let F be a singular foliation. A smooth arc α is called trans-
verse to F , if it misses all singular points and is transverse to the leaves. A
transverse measure µ in a singular foliation F defines on every arc transverse to
F a (non-negative) Borel measure µ(α) such that:

1. If β is a subarc of α, then µ(β) is the restriction of µ(α) to β.

2. If two arcs α0, α1 : I → Σ are related by a homotopy H : I × I → Σ such
that H(I × {0}) = α0, H(I × {1}) = α1, and such that H({a} × I) is
contained in a single leaf for each a ∈ I, then µ(α0) = µ(α1), identifying
here the leaves using the homotopy.

A singular foliation together with a transverse measure is called a measured
foliation.

Homeomorphisms of Σ act on measured foliations by ϕ·(F , µ) = (ϕ(F), ϕ∗µ),
where ϕ∗µ(α) = µ(ϕ−1(α)). We can now state the main result of this section
(see [BC88, Thm. 6.3], [FLP79, Exposé 1, Thm. 5]).

Theorem 1.15 (The Nielsen–Thurston classification). A mapping class f in
Γg, g ≥ 0, has exactly one of the following three properties.

1. The class f has finite order in Γg.

2. The class f has infinite order but is reducible. That is, some power of f
preserves the isotopy class of an essential simple closed curve.
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3. The class f is pseudo-Anosov meaning that there exist transverse measured
foliations (Fs, µs), (Fu, µu), and λ > 1 real, such that f is represented by
a homeomorphism ϕ (which we will also call pseudo-Anosov) satisfying

ϕ · (Fs, µs) = (Fs, λ−1µs), ϕ · (Fu, µu) = (Fu, λµu).

In the pseudo-Anosov case, Fs and Fu are called the stable and unstable
foliations respectively, and the number λ which turns out to depend only on f
is called the stretch factor or dilatation of f .

1.3.1 Constructing pseudo-Anosov homeomorphisms
We give an explicit construction of pseudo-Anosov elements due to Penner,
[Pen88], generalizing work by Thurston, [Thu88]. Thurston’s idea was the follow-
ing: It turns out that every pseudo-Anosov homeomorphism carries a so-called
train track on the surface (see below for details). Train tracks provide a way of
translating the a priori non-linear problem of determining the action of pseudo-
Anosovs on curves to a linear and combinatorial problem; associated to the
pseudo-Anosov homeomorphism and the train track carried by it is a so-called
incidence matrix. It turns out that this matrix is Perron–Frobenius; that is, it
satisfies the conditions of the following theorem.

Theorem 1.16 (Perron–Frobenius). Let A be an n × n matrix with integer
entries. If A has a power whose entries are positive, then A has a unique eigen-
vector v of unit length with non-negative entries. The eigenvalue λ corresponding
to v is larger in absolute value than all other eigenvalues.

The eigenvalue of the incidence matrix coming from this theorem turns out to
be exactly the stretch factor of the pseudo-Anosov map being considered. Con-
versely, under certain conditions, if a given homeomorphism carries a particular
train track, and the associated incidence matrix is Perron–Frobenius, then the
given homeomorphism is pseudo-Anosov. By explicitly constructing train tracks
for a certain class of homeomorphisms, Penner immediately constructs a large
family of pseudo-Anosovs.

Definition 1.17. A multicurve in a surface Σ is a collection of disjoint sim-
ple closed curves in Σ. We say that two multicurves A = {α1, . . . , αn}, B =
{β1, . . . , βm} fill Σ, if the isotopy class of any essential simple closed curve has
non-zero intersection with the isotopy class of one of the αi or βj .

Theorem 1.18 ([Pen88]). Assume that A = {α1, . . . , αn} and B = {β1, . . . , βm}
fill Σ. Then any product of positive powers of tαi and negative powers of tβj ,
with all curves appearing at least once, is pseudo-Anosov.

Remark 1.19. Penner conjectures that all pseudo-Anosovs arise this way. More
precisely, he conjectures that for any pseudo-Anosov ψ, there exists A and B as
in the theorem, and n > 0, such that ψn is a word in positive powers of Dehn
twists of curves from A and negative powers of those from B.

As already mentioned, Penner proves this by giving an explicit construction of
which we give an example relevant to our later studies. Recall the presentation of
Γ2 given in Section 1.2.2 and consider the mapping class w = a1a

−1
2 a3a

−1
4 a5. The

two multicurves giving rise to the Dehn twists a1, a3, a5 and a2, a4 respectively
fill the surface, so by Penner’s theorem w is pseudo-Anosov. As described above,
we can determine the stretch factor of the mapping class using the theory of
train tracks.
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Definition 1.20. A train track on a surface Σ is a finite graph τ embedded in
Σ satisfying the following:

1. Each edge is the smooth image of an interval. Edges are called branches
of τ .

2. If b1 and b2 are branches meeting a vertex, their one-sided tangents in the
vertex point either coincide or differ by a rotation by an angle π of the
tangent plane. Vertices are called switches.

3. No component of Σ \ τ is an embedded null-gon, mono-gon, bi-gon, once
punctured null-gon, or annulus.

Here, an n-gon is a disc embedded in Σ with n discontinuities in the tangent
in the boundary of the disc. We say that a train track τ carries another track
τ ′, if there is a C1 map Φ : Σ → Σ homotopic to the identity with Φ(τ ′) ⊆ τ
and such that dΦp has non-zero restriction to tangents of τ ′, for all p ∈ τ ′. In
this case we define the incidence matrix M of Φ as follows. For every branch bi
of τ , choose a point xi in the interior of bi, and define Mij = #{Φ−1(xi) ∩ cj},
where the cj range over branches of τ ′.

Let us return to the mapping class w ∈ Γ2 defined above. One defines a train
track on Σ2 by “smoothing” as in Figure 1.11. It is now easy to see that the
train track is carried by each of the elements in the word w, and the carrying
property is clearly transitive, so w carries the train track. Penner proves that
this procedure works in general.

Figure 1.11: The train track carried by w.

The incidence matrix in question will be 12 × 12. In practice it might be
easier to consider measured train tracks. A measure on a train track τ is an
assignment of non-negative integers called weights to branches of τ such that
these satisfy the switch condition: The branches of τ are divided into two sets
by condition 2. above. We require that the sums of weights of branches in the
two sets agree. In our example, the weights of the branches in the 12-branch
train track are determined by 5 of the weights, and one could define an incidence
matrix using only these 5 branches. In this particular case, an incidence matrix
is 

2 2 2 2 1
1 2 2 2 1
0 1 2 2 1
0 0 1 2 1
0 0 0 1 1

 ,

and the stretch factor is 1
2 (5 +

√
21) ≈ 4.79.



Chapter 2
Geometric quantization

In this chapter, we develop the framework that will later result in particular
representations of the mapping class group.

In general, geometric quantization is one of several schemes involving the
passage from a classical physical theory to a quantum mechanical analogue.
The phase space of a classical system is a certain symplectic manifold (M,ω),
and observables correspond to smooth functions on M . Geometric quantization
associates to M a complex line bundle L → M and a Hilbert space H of states
consisting of certain sections of L. To observables onM it associates self-adjoint
operators on H. The process of geometric quantization is typically divided into
three parts; prequantization which is concerned with the associations above,
polarization which restricts the collection of quantizable observables through a
choice of a certain distribution on M , and finally metaplectic correction which
involves repairs to the quantization which are necessary, for example in order
to obtain the correct energy values for the harmonic oscillator. We will largely
avoid discussion of physics and in order to obtain our desired representations,
all we need is an understanding of the line bundles arising from prequantization.
Details on the entire method can be found in e.g. [Woo92], [AE05].

2.1 Preliminaries

2.1.1 Connections in principal bundles
Definition 2.1. Let M be a manifold and G a Lie group. A principal G-bundle
over M is a manifold P satisfying the following:

1. There is a free right action of G on P such that M is the quotient space
of P under this action, and the quotient π : P → P/G = M is smooth.

2. Furthermore, P is locally trivializable; that is, every point of M has a
neighbourhood U with an equivariant diffeomorphism π−1(U) → U × G
covering the identity on M .

Let π : P → M be a principal G-bundle over a manifold M . For p ∈ P , let
ip : G → P denote the map ip(g) = p · g, and similarly let rg : P → P denote
the map ig(p) = p · g. For every X = Xe ∈ g ∼= Te(G), let X∗p = (dip)e(Xe).

11
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This defines a vector field on P which is vertical in the sense that dπ(X∗) = 0.
In other words, for every p ∈ P , we have a short exact sequence

0→ g
(dip)e→ TpP

dπp→ Tπ(p)M → 0.

Now, a connection on P defines a notion of horizontality in the principal bundle
through a smooth choice of G-equivariant splittings of this exact sequence for all
p ∈ P . More precisely, we consider the following:

Definition 2.2. A connection on a principal bundle G→M is a g-valued 1-form
A on P such that

1. A(X∗) = X for all X ∈ g.

2. A isG-equivariant in the sense that for all g ∈ G, we have r∗g(A) = Adg−1 A.

Thus, if we let Vp = ker(dπ) ⊆ TpP denote the space of all vertical vectors
in TpP , then TpP = Vp ⊕Hp, where Hp = ker(Ap) is the horizontal subspace of
TpP . Conversely, for every n-dimensional distribution H on P → M satisfying
that dπp|Hp : Hp → Tπ(p)M is an isomorphism and that Hp·g = d(rg)Hg, there
is a unique connection A on P →M with ker(Ap) = Hp for all p.

Throughout the rest of this report, let AP denote the set of connections on
the principal bundle P →M .

2.1.2 Curvature of connections
We now introduce the concept of curvature of a principal bundle connection. We
do this by instead considering it as an affine connection in an associated vector
bundle, and describing the curvature as the failure of a certain sequence to be a
chain complex.

Definition 2.3. Let P → M be a principal G-bundle, and let ρ : G → GL(V )
be a representation of G on a finite dimensional vector space V . The vector
bundle associated to P by ρ is the quotient space

P ×ρ V = P × V/ ∼,

where (p, v) ∼ (p · g, ρ(g−1)v) with projection π : P ×ρ V → M given by
π([(p, v)]) = p. In particular, for the adjoint representation Ad : G → GL(g),
the associated vector bundle is denoted AdP and called the adjoint bundle.

Remark 2.4. Let E = P ×ρ V be the vector bundle associated to a principal
G-bundle P by ρ. Associate to a G-equivariant map f : P → V , i.e. a map
satisfying f(p · g) = ρ(g−1)f(p), a section ϕf of E by letting ϕf (x) = [(p, f(p))]
for some p ∈ π−1(x). This association is a bijection.

This observation allows us to associate to every connection A in P →M an
affine connection in the adjoint bundle AdP as follows: Let ϕ : P → V be the
G-equivariant map corresponding to a section of AdP , and let X be a vector
field on M . Let p ∈ P , and let X̃p be the unique horizontal lift of Xπ(p) to TpP ,
given by the connection A. Now, define a G-equivariant map ∇AXϕ : P → V by
letting

∇AXϕ(p) = dϕp(X̃p) ∈ Tϕ(p)V ∼= V.

Recall that any affine connection ∇ : C∞(M,E) → Ω1(M,E) in a vector
bundle E →M extends to a map ∇ : Ωk(M,E)→ Ωk+1(M,E) (see e.g. [Wel08,
p. 74]) and gives a sequence

· · · → Ωk−1(M,E) ∇→ Ωk(M,E) ∇→ Ωk+1(M,E)→ · · · . (2.1)
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In a local frame f over U ⊆M for E, this extension is given by

∇ξ(f) = dξ(f) + θ(f) ∧ ξ(f),

where ξ ∈ Ωp(U,E), and θ(f) = θ(∇, f) ∈ Ω1(U,Hom(E,E)) is the connection
matrix associated with ∇. In general, we will not have ∇ ◦ ∇ = 0, and we let
F∇ ∈ Ω2(M,Hom(E,E)) denote the curvature of ∇ given by

F∇ϕ = ∇∇ϕ

for ϕ ∈ C∞(M,E). In a local frame f , the curvature is given in terms of the
connection matrix: Let ξ ∈ C∞(U,E). Ignoring the notational dependence on
f , we find that

F∇ξ = (d+ θ)(d+ θ)ξ = (d+ θ)(dξ + θ · ξ)
= d2ξ + θ · (dξ) + d(θ · ξ) + θ ∧ (θ · ξ)
= θ · (dξ) + dθ · ξ − θ · (dξ) + (θ ∧ θ)ξ
= dθ · ξ + (θ ∧ θ) · ξ.

That is, we have the following:

Lemma 2.5. In a local frame f ,

F∇(f) = dθ(f) + θ(f) ∧ θ(f).

We are now in a position to describe the curvature of a connection in a
principal G-bundle.

Definition 2.6. Let A be a connection in P → M , and let ∇A be the in-
duced connection in AdP . The curvature FA of A is the curvature F∇A ∈
Ω2(M,Hom(AdP ,AdP )).

We end this section by giving a few alternative descriptions of the curvature
of A. Let Ωk(P ; g) = Ωk(P × g) be the space of g-valued k-forms on P , and let
Ωk(P ; g)G be the subset of those k-forms that are G-equivariant. The pullback
of the adjoint bundle AdP under π : P → M is the trivial bundle P × g → P .
The pullback ∇̃A of ∇A to P × g in fact restricts to the G-equivariant forms on
P and gives rise to a sequence

· · · → Ωk−1(P ; g)G ∇̃
A

→ Ωk(P ; g)G ∇̃
A

→ Ωk+1(P ; g)G → · · · . (2.2)

Proposition 2.7. We have

∇̃A∇̃Aϕ = [(dA+ 1
2 [A ∧A]) ∧ ϕ]

for ϕ ∈ Ωk(P ; g), where [·, ·] denotes the bracket on g. Let F∇̃A be the curvature
of ∇̃A, i.e. F∇̃A = ∇̃A ◦ ∇̃A. Then π∗(FA) = F∇̃A .

Finally, using the G-equivariance of A, it is possible to view the curvature
FA as an element of Ω2(M,AdP ). Namely, for q ∈ M , p ∈ π−1(q), and vector
fields X,X ′ on M , define

F̃A(Xq, X
′
q)(p) = (dA+ 1

2 [A ∧A])((dπ|Hp)−1Xq, (dπ|Hp)−1X ′q).

This (well-)defines a G-equivariant map P → g, and by Remark 2.4 we can
consider F̃A ∈ Ω2(M,AdP ). In the following proposition, [·, ·] : AdP ⊗AdP →
AdP is defined by [(p, v), (p, v′)] = (p, [v, v′]) on representatives (p, v) and (p, v′).
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Proposition 2.8. Let F̃A ∈ Ω2(M,AdP ) be the 2-form defined above. Then for
every ϕ ∈ Ωk(M,AdP ), we have

∇A∇Aϕ = [FA ∧ ϕ],

and π∗(F̃A) = dA+ 1
2 [A ∧A] ∈ Ω2(P ; g)G.

Conversely, dAd : g→ Hom(g, g) induces a map

Ωk(M,AdP )→ Ωk(M,Hom(AdP ,AdP ))

mapping the F̃A of Proposition 2.8 to the FA of Definition 2.6. For a proof of the
above results, see [Him10]. Because of this, we will abuse notation and also refer
to the element π∗(F̃A) ∈ Ω2(P ; g)G as the curvature of A and simply denote it
FA.

Definition 2.9. A connection A on a principal G-bundle P →M is called flat,
if FA = 0 pointwise. The space of all flat connections on P is denoted FP .

Notice that we could have simply defined FA = dA+ 1
2 [A ∧ A] ∈ Ω2(P ; g)G,

but we stress the fact that the curvature of A is exactly the obstruction to the
sequence (2.1) being a complex.

2.2 Prequantum line bundles
Throughout this section, let (M,ω) be a symplectic manifold with a symplectic
form ω ∈ H2(M,R).

Definition 2.10. A prequantum line bundle on (M,ω) is a triple (L,∇, (·, ·))
consisting of a complex line bundle L →M with a Hermitian structure (·, ·), and
a compatible connection ∇ satisfying the prequantum condition

F∇ = i

2πω.

A necessary and sufficient condition for the existence of a prequantum line
bundle on M is that [ω] ∈ Im(H2(M,Z)→ H2(M,R)). See e.g. [Woo92].

Let (L,∇, (·, ·)) be a prequantum line bundle on a compact symplectic man-
ifold M , and let Hk = C∞(M,L⊗k) be the space of all sections of L⊗k. This is
an inner product space with an inner product

〈s1, s2〉 = 1
n!

∫
M

(s1, s2)kωn,

where 2n is the dimension of M , and (·, ·)k is the Hermitian structure on L⊗k
induced by that on L. The relevant Hilbert space in this context is the L2-
completion of Hk. For our purpose though, the main point of interest lies in a
certain finite-dimensional subspace of Hk, constructed as follows.

Assume that T is a smooth manifold smoothly parametrizing Kähler struc-
tures on M . That is, assume that there is a map I : T → C∞(M,End(TM))
mapping σ 7→ Iσ such that for every σ ∈ T , (M,ω, Iσ) is Kähler, and such that
I is smooth in the sense that it defines a smooth section of the pullback bundle
π∗M (End(TM)) over T ×M , where πM : T ×M → M denotes the projection
onto M . We denote by Mσ the Kähler manifold (M,ω, Iσ). Using the complex
structure on Mσ, ω has type (1, 1), and by the prequantum condition, the line
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bundles L⊗k canonically obtain the structures of holomorphic line bundles (see
[Kob97, Prop. 3.7]) denoted L⊗kσ . Now, let

Hk
σ = H0(Mσ,L⊗kσ ) = {s ∈ Hk | (∇0,1

Iσ
)s = 0}

be the space of holomorphic sections of Hk. Using the splitting

T ∗M ⊗ C = T ∗M ⊕ T̄ ∗M ,

of the complexified cotangent bundle into eigenspaces of Iσ, the operator ∇0,1
Iσ

is
the composition

C∞(M,L⊗k) ∇→ C∞(M,T ∗M ⊗ L⊗k)
π0,1
Iσ→ C∞(M, T̄ ∗M ⊗ L⊗k),

which can be identified with the operator ∂̄Iσ giving rise to the holomorphic
structure on L⊗k.

The process of restricting the space of sections using Kähler structures on M
is known as Kähler quantization.

2.3 Hitchin’s connection
Our next objective is to understand the dependence of Hk

σ on the complex struc-
tures σ. More precisely, consider the trivial bundle T × Hk → T . It is a
non-trivial fact that the vector spaces Hk

σ are all finite-dimensional, and we now
assume that they form a finite rank subbundle Vk of T × Hk. Our goal is to
find a connection in T × Hk preserving the subbundle Vk. Let ∇t denote the
trivial connection in the vector bundle T ×C∞(M,L⊗k). Then the composition
of ∇t with the fibre-wise projection πkσ : Hk → Hk

σ defines a connection which
preserves Vk by construction. However, this connection is non-flat and thus not
suited for our purpose.

Hitchin’s idea was to instead consider the connection ∇H in T ×Hk defined
by ∇H

V = ∇t
V −u(V ) for vector fields V on T , where u(V )σ ∈ Diff(2)(M,L⊗k) is

a second order differential operator, and to analyze under which conditions on u
the connection ∇H will preserve Vk. Whereas this is not always the case, under
certain conditions one can find explicit formulas for u; see e.g. [And06b].

A natural question concerns the flatness of the connection. We will see that
in certain special cases, and indeed in the cases relevant for us, it is possible
to find a projectively flat connection in the bundle Vk. Here, a connection is
called projectively flat, if parallel transport defines isomorphisms of fibres up to
scalar multiplication. In other words, if the projectivization PVk admits a flat
connection.

2.4 Toeplitz operators
Whereas we will not need it directly in this chapter, the theory of Toeplitz
operators turns out to give a convenient tool to describe asymptotics of quantum
representations, as we will see later.

The inner product on Hk
σ determines an operator norm ‖·‖ on End(Hk

σ).

Definition 2.11. Let f ∈ C∞(M). The Toeplitz operator T kf,σ : Hk
σ → Hk

σ is
defined by

T kf,σ(s) = πkσ(f · s).
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In what follows, we suppress the dependence on the complex structure σ for
Toeplitz operators and simply write T kf for T kf,σ. As we will primarily be inter-
ested in the Toeplitz operators because of their abilities to describe asymptotics,
we list the folowing properties, due to Bordemann, Meinrenken and Schlichen-
maier [BMS94], and Schlichenmaier [Sch98] respectively.

Lemma 2.12. Let f ∈ C∞(M). Then

lim
k→∞

‖T kf ‖ = sup
x∈M
|f(x)|.

Theorem 2.13. Let f1, f2 ∈ C∞(M). Then

T kf1
T kf2
∼
∞∑
l=0

T kcl(f1,f2)k
−l,

where cl(f1, f2) ∈ C∞(M) are uniquely determined functions, and c0(f1, f2) =
f1f2. Here, ∼ means that

‖T kf1
T kf2
−

L∑
l=0

T kcl(f1,f2)k
−l‖ = O(k−(L+1))

for all positive integers L.

Remark 2.14. The coefficients cl closely relates geometric quantization to defor-
mation quantization as they define a star product on M . We will not need this
fact and refer to [KS01] for the details.

2.5 Quantization of moduli spaces
The space we will be interested in quantizing is the space of flat connections in a
trivializable principal G-bundle on a given surface. Before going into the details,
we review the general picture and some of the central results.

2.5.1 The moduli space of flat connections
Let π : P →M be a principal G-bundle. We first describe how, given a connec-
tion A in P →M , any curve in M can be lifted to a unique horizontal curve in
P .

Lemma 2.15. Let A be a connection in P →M . Let α : [0, 1]→M be a smooth
curve with starting point α0, and let p0 ∈ π−1(α0). Then there exists a unique
smooth lift β : [0, 1]→ P of α with starting point p0, such that β̇t is a horizontal
lift of α̇t.

Proof. Let γ : [0, 1]→ P be any lift of α. Then we want to find a smooth curve
βt = γt · gt : I → P , where gt : [0, 1]→ G, so that A(β̇t) = 0 for all t ∈ [0, 1]. We
see that

A(β̇t) = A((drgt)γ̇t + (diγt)ġt) = Adg−1
t

(γ̇t) + (dlg−1
t

)(ġt),

where lg : G→ G denotes left multiplication in G. Thus, A(β̇t) = 0 if and only
if

A(γ̇t) = −(drg−1
t

)ġt.

Solving this equation with initial condition γ0·g0 = p0 gives the desired horizontal
lift βt.



2.5. QUANTIZATION OF MODULI SPACES 17

If α : [0, 1]→M is a loop, α(0) = α(1) = x0, the starting and ending points
of the lift β defined above are both in the fibre Px0 over x0. Thus there is a g so
that β(1) = β(0) · g. This g is called the holonomy of A along α with respect to
p0 and is denoted g = holA,p0(α). This defines a map

holA,p0 : Loops(M,x0)→ G

for any given p0 ∈ π−1(x0).
The space AP of all connections in the principal G-bundle P →M is too big

for our purposes, and in this section we restrict it using the natural symmetry
arising from the G-action.

Definition 2.16. A principal bundle homomorphism between two principal G-
bundles P and P ′ is a G-equivariant bundle homomorphism. If P = P ′ it is
called a gauge transformation of the bundle. Denote by GP the group of all
gauge transformations P → P .

Remark 2.17. To every G-equivariant map u : P → G, p 7→ up, we associate a
gauge transformation Φ : P → P by letting Φ(p) = p · up. Here, g ∈ G acts on
itself on the right by h 7→ g−1hg. This association is a bijection.

The group GP acts on AP via pullback, and the action preserves FP . For a
G-equivariant map u : P → G, we write this action A 7→ A · u.

Definition 2.18. The moduli space of flat connections on a principal G-bundle
P →M is the spaceMP = FP /GP .

Before indulging in the question on how to quantize MP , we give a group
theoretical description of it using the holonomy map. For a proof of the following
results, see Prop. 3.10.1 and Thm. 3.10.4 of [Him10].

Proposition 2.19. Let A be a flat connection in P , and assume that M is
connected. Let x0 ∈ M , let p0 ∈ π−1(x0), and let α be a loop in M . Up to
conjugation in G, the association A 7→ holA,p0(α) is independent of the base
point x0, the choice of lift p0, the gauge tranformation class of the connection
A, and the homotopy class of α. In other words, we have a well-defined map

hol :MP → Hom(π1(M), G)/G,

where G acts on Hom(π1(M), G) on the right by (ρ · g)(α) = g−1ρ(α)g.

Definition 2.20. A flat principal G-bundle on a manifold M is a pair (P,A)
consisting of a principal G-bundle P → M and a flat connection A in P . Two
flat principal G-bundles (P,A) and (P ′, A′) are called isomorphic if there is a
principal bundle homomorphism Φ : P → P ′ such that A = Φ∗(A′). The set
M(M,G) of isomorphism classes is called the moduli space of flat principal G-
bundles on M .

Theorem 2.21. The mapM(M,G)→ Hom(π1(M), G)/G mapping [(P,A)] to
[holA] is a bijection.

2.5.2 The Chern–Simons line bundle
The goal of this section is to give a sketch of the construction that a certain
subset of the moduli space is pre-quantizable.

From now on, assume always that G is a simple, connected, simply connected,
and compact Lie group. In this case, it is well-known that any principal G-bundle
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over M , where dimM ≤ 3, is trivializable. Let Y be an oriented compact 3-
manifold with boundary ∂Y = Σ, and let P → Y be a principal G-bundle.
Trivializing the bundle P ∼= Y ×G by a trivialization p 7→ (π(p), gp) is equivalent
to a choice of a section s : Y → P through the identification p · gp = s(π(p)).
Using such a section, the pullback of connections determines an identification
AP ∼= Ω1(Y ; g), and likewise we can identify GP ∼= C∞(Y,G).

Let 〈·, ·〉 : g ⊗ g → R be an Ad-invariant inner product on g, and define for
a connection A ∈ AP with curvature FA ∈ Ω2(P ; g), the Chern–Simons form
α(A) ∈ Ω3(P ) by

α(A) = 〈A ∧ FA〉 − 1
6 〈A ∧ [A ∧A]〉.

Definition 2.22. Let s : Y → P be a trivialization of P → Y . The Chern–
Simons functional or Chern–Simons action is given by

CSs(A) =
∫
Y

s∗α(A) ∈ R

Let θ ∈ Ω1(G; g) be the Maurer–Cartan form defined by θ(v) = (dlg−1)v ∈ g
for v ∈ TgG. The next proposition describes the behaviour of the Chern–Simons
functional under gauge transformation (see [Fre95, Prop. 2.10]).

Proposition 2.23. Let Φ : P → P be a gauge transformation with associated
map u : P → G and let θu = (u ◦ s)∗θ. Then for A ∈ Ω1(Y ; g),

CSΦ◦s(A) = CSs(Φ∗A)

= CSs(A) +
∫
∂Y

〈Ad(u◦s)−1 A ∧ θu〉 −
∫
Y

1
6 〈θu ∧ [θu ∧ θu]〉.

Assume from now on that 〈·, ·〉 is normalized so that −
∫
G

1
6 〈θ ∧ [θ ∧ θ]〉 = 1.

Then the last integral of Proposition 2.23 is an integer.
Remark 2.24. In the case where Y is closed we obtain the Chern–Simons action

CSs : AP /GP → R/Z.

Since any two sections are related by a gauge transformation, by Proposition 2.23
this function is independent of s and will be denoted CS.

Our next goal is to associate in the non-closed case, ∂Y = Σ, Q = P |Σ, a
certain complex line bundle LQ over AQ and use the Chern–Simons action to
define a lift of the action of GQ to LQ, ultimately giving rise to a line bundle
over a subset of the quotient AQ/GQ. We first need the following (see [Fre95,
Lem. 2.12]).

Lemma 2.25. For any gauge transformation g : Y → G, the functional

W∂Y (g) =
∫
Y

− 1
6 〈g
∗θ ∧ [g∗θ ∧ g∗θ]〉 (mod 1)

depends only on the restriction of g to ∂Y .

Let GQ denote the space of gauge transformations in Q. Fix again a trivializa-
tion s of P , let A ∈ AQ ∼= Ω1(Σ; g) and let g : Σ→ G be a gauge transformation
in Q. Choose extensions Ã and g̃ of A and g to a connection respectively a
gauge transformation in P . By Proposition 2.23 and Lemma 2.25, the function
Θ : AQ × GQ → U(1) given by

Θ(A, g) = exp(2πi(CSs(g̃∗Ã)− CSs(Ã))) (2.3)
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depends neither on the choice of extensions of A and g, nor of the preliminary
choice of trivialization. It turns out that Θ satisfies the cocycle condition

Θ(g∗A, h)Θ(A, g) = Θ(A, gh).

We turn now to the question of defining a symplectic structure on (an appropriate
subspace of) the moduli space. We do this through a quotient construction,
considering a symplectic structure on AQ. Notice that AQ is really an affine
infinite-dimensional manifold, modelled on Ω1(Σ; g). We ignore all technical
details necessary to deal with such objects and simply notice that for a given
connection A ∈ AQ, there is an identification TAAQ ∼= Ω1(Σ; g). There then is
a natural symplectic form ω on AQ, invariant under GQ, defined by

ω(η1, η2) = −
∫

Σ
〈η1 ∧ η2〉

for η1, η2 ∈ Ω1(Σ; g). Using a similar identification TIdGQ ∼= C∞(Σ, g), a moment
map µ : A → C∞(Σ; g) for the action of GQ on AQ is given by

µξ(A) = 2
∫

Σ
〈FA ∧ ξ〉,

for ξ ∈ C∞(Σ, g), and A ∈ AQ with curvature FA ∈ Ω2(Σ; g). Notice now that
the (infinite-dimensional analogue of the) Marsden–Weinstein quotient

MQ = µ−1({0})//GQ

is exactly the moduli spaceMQ of flat connections on Q up to gauge equivalence.
Let A∗Q be the subset of AQ consisting of flat irreducible connections in Q,

i.e. flat connections A such that ∇A is injective, and let M∗Q = A∗Q/GQ. This
space turns out to be an open subset ofM obtaining naturally the structure of
a symplectic manifold through the quotient construction.

Now, let L̃Q = AQ×C be the trivial line bundle over AQ and lift the action of
GQ to L̃Q using Θ. There is then a connection B on L̃Q given in a trivialization
s : Σ→ Q by

(Bs)A(η) =
∫

Σ
〈A ∧ η〉,

for A ∈ AQ ∼= Ω1(Σ; g), η ∈ TAAQ ∼= Ω1(Σ; g). One checks that this indeed
defines a connection on L̃Q, constructed to satisfy FB = i

2πω. What is less
obvious is that this connection is preserved by the lifted action of GQ and induces
a connection B̄ on the line bundle L →M∗Q defined to be all equivalence classes
of elements of A∗Q × C under the relation

(A, z) ∼ (g∗A,Θ(A, g)z)

for all g ∈ GQ. The line bundle L carries a Hermitian structure since Θ is U(1)-
valued, and B̄ is compatible with this structure. Thus we finally obtain the
following:

Theorem 2.26. Let Σ be a closed oriented surface and Q → Σ a principal
G-bundle. Then the moduli space M∗Q of flat irreducible connections is pre-
quantizable.

Freed furthermore discusses the case of a surface with boundary, which is
slightly more involved: Let Σ be a compact surface with k boundary components,
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and letQ→ Σ be a principalG-bundle. Fix h1, . . . , hk ∈ G. LetMh1,...,hk be the
moduli space of flat connections having holonomy hi around the i’th boundary
component. As before, this space is not necessarily smooth, the problem once
again being reducible connections, but Freed goes on to prove that the smooth
part consisting of irreducible connections is pre-quantizable.

An important special case is the following: Assume that Σ is a compact
surface with genus g ≥ 2 and a single boundary component. The fundamental
group of Σ is then freely generated by αi, βi, i = 1, . . . g. Let p ∈ ∂Σ, and
let γ =

∏g
i=1[αi, βi] ∈ π1(Σ, p) be the class of a loop going once around the

boundary. Let G = SU(n), and let d ∈ Zn be relatively prime to n, or let
(n, d) = (2, 0) if g = 2. Let D = e2πid/nI ∈ SU(n), and define

Homd(π1(Σ, p),SU(n)) = {ρ ∈ Hom(π1(Σ, p),SU(n)) | ρ(γ) = D}.

The conjugation action acts on this subspace of Hom(π1(Σ, p),SU(n)), and one
finds that it consists of irreducible representations. The resulting moduli space

Md
SU(n) = Homd(π1(Σ, p),SU(n))/ SU(n)

is a smooth compact manifold that does not depend on p, and Freed [Fre95]
proves that it admits a prequantum line bundle.

2.5.3 Teichmüller space and Hitchin’s connection
Let Σ be a compact surface, and let C(Σ) be the space of conformal equivalence
classes of Riemannian metrics on Σ. Recall that two metrics are called confor-
mally equivalent if they are related by multiplication by a positive function. The
group Diff(Σ) of orientation-preserving diffeomorphisms of Σ acts on C(Σ) by
pulling back metrics.

Definition 2.27. The Teichmüller space of Σ is the quotient

T (Σ) = C(Σ)/Diff0(Σ).

It is well-known that there is a bijective correspondence between elements of
C(Σ) and complex structures on Σ – see e.g. [Jos02]. For that reason, Teichmüller
space is often refered to as the space of complex structures on Σ, even if this
is slightly misleading. It is worth noting the well-known fact that T (Σ) is a
contractible space and carries a natural complex structure.

From now on, let P → Σ be a principal G-bundle, and let G = SU(n). As the
notation suggests, we want T to parametrize complex structures on the space
M∗ of irreducible flat SU(n)-connections on Σ. A Riemannian metric (or a
complex structure) on Σ gives rise to a Hodge star operator ∗ : Ω1(Σ)→ Ω1(Σ).
Extending this to an operator on AdP -valued 1-forms and using the fact that
H1(Σ,AdP ) identifies with the space ker(dA)∩ker(∗dA∗) of harmonic AdP -valued
1-forms, the operator ∗ acts on T[A]M∗ ∼= H1(Σ,AdP ). Furthermore, ∗ satifies
∗2 = −1, and defines an almost complex structure Iσ = −∗ on M∗. By work
of Narasimhan and Seshadri [NS64], this almost complex structure is integrable.
Finally, it can be seen to be compatible with the symplectic structure defined
previously and soM∗ obtains the structure of a Kähler manifold (M∗, ω, Iσ).

This defines a map I : C(Σ) → C∞(M∗,End(TM∗)). The group Diff(Σ)
also acts onM∗ via its action on π1(Σ) and gives an induced action of Diff(Σ)
on C∞(M∗,End(TM∗)). The map I is equivariant with respect to this action,
and Diff0(Σ) acts trivially onM∗, so we obtain a map

I : T (Σ)→ C∞(M∗,End(TM∗))
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parametrizing Kähler structures onM∗. In this case, the bundle V over T with
fibres Vσ = H0(M∗,L⊗kσ ) does form a finite rank vector bundle, and the exis-
tence of a projectively flat connection in this bundle – as outlined in Section 2.3 –
was proved by Hitchin [Hit90], and Axelrod, della Pietra, and Witten [AdPW91]
using techniques from algebraic geometry. We will refer to this as the Hitchin
connection.

In the case where Σ is a compact surface with genus g ≥ 2 and one boundary
component, the space M = Md

SU(n) carries the structure of a compact Kähler
manifoldMσ = (M, ω, Iσ) for every σ ∈ T (Σ). This moduli space satisfies the
conditions of [And06b, Thm. 1], and we could appeal to Andersen’s construction
to obtain an explicit expression for the Hitchin connection in this case.

2.6 Remarks on group cohomology
Later, we will need a group cohomology description of the cohomology groups
arising from the sequence (2.1) when A is a flat connection and ∇ = ∇A, and
we introduce here the most basic concepts we will need. One further reference
on group cohomology is [Bro82].

Let G be any group. A G-module is an abelian group N with a left action of
G. The elements of N invariant under the action will be denoted NG. A cocycle
on G with values in N is a map u : G→ N satisfying the cocycle condition

u(gh) = u(g) + gu(h).

A coboundary is a cocycle of the form g 7→ δm(g) := m − gm for some m ∈ N .
The set of cocycles is denoted Z1(G,N), and the set of coboundaries is denoted
B1(G,N). We define the first cohomology group of G with coefficients of N as
the quotient

H1(G,N) = Z1(G,N)/B1(G,N).

Notice that an element of N satisfies δm ≡ 0 exactly when m ∈ NG. We are led
to define

H0(G,N) = NG.

Now, let P → M be a principal G-bundle over a 3-manifold M , and let [A] be
the gauge equivalence class of a flat connection in P , represented by a represen-
tation ρ ∈ Hom(π1(M), G) using Theorem 2.21. The representation ρ defines a
π1(M)-module structure on g through the composition Ad ◦ρ : π1(M)→ Aut(g).
Let Hi(M,AdP ) denote the cohomology of the complex (2.1) with the induced
connection ∇A. The following theorem is well-known.

Theorem 2.28. If M has contractible universal covering space, there are iso-
morphisms

H0(M,AdP ) ∼= H0(π1(M), g), H1(M,AdP ) ∼= H1(π1(M), g).



Chapter 3
Topological quantum field theory

3.1 Historical background
We begin this chapter with a brief discussion of how Chern–Simons theory heuris-
tically gives rise to the notion of topological quantum field theory (TQFT). Re-
call that for a closed 3-manifold M with a principal G-bundle P → M , the
Chern–Simons action defines a map

CS : AP /GP → R/Z.

Witten, in the late 80’s, considered this as the Lagrangian of a so-called quantum
field theory. One feature of these is the existence of a partition function, in this
case given by the path integral

Zk(M) =
∫
AP /GP

exp(2πikCS(A))DA,

for k ∈ N. From a mathematical point of view, this is ill-defined, as there is no
way to make sense of the integral over the infinite-dimensional space AP /GP ,
but Witten argues on the physical level of rigour that it defines a topological
invariant of the 3-manifold M called the quantum G-invariant of M at level k.
It is worth noting that using the path integral, this invariant can be extended
formally to an invariant of pairs (M,L), where L is a link in M , as follows: To
every component Li of L we associate a finite-dimensional representation Ri of
G – referred to as a colouring – and let

Zk(M,L,R) =
∫
AP /GP

∏
i

tr(Ri(holA(Li))) exp(2πikCS(A))DA.

In the non-closed case, ∂M = Σ 6= ∅, the aim is to associate to the boundary
a vector space V (Σ), which from a physical point of view represents physical
states on Σ, and to the 3-manifold M a vector Zk(M) ∈ V (Σ) which physically
represents the time evolution of states. Let P →M be a principal G-bundle with
a trivialization s : M → P . As the moduli spaceM of irreducible connections in
P |Σ → Σ is pre-quantizable, we can use the general construction in Section 2.2
to obtain the vector space V (Σ) = H0(M,L⊗k) of holomorphic sections of the
line bundle L⊗k → M. Heuristically, we obtain a vector in this space in the
following way: For each [A] ∈M, let AA be the connections on M restricting to

22
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A on the boundary, and let G′ ⊆ GP denote the gauge transformations restricting
to gauge transformations on P |Σ. Now, let

Zk(M)([A]) =
∫
AA/G′

exp(2πikCSs(A′))DA′.

By the construction of L, it turns out that this formally gives rise to a holo-
morphic section of L⊗k → M. Again however, this is of course ill-defined as
the integral is. Trying to axiomatize the physical formalism, one arrives at the
notion of a TQFT. In this chapter, we first describe TQFT from a general point
of view and go on to consider two rigorous constructions of such theories.

For more details on the general picture, see e.g. [Oht02, App. F] or Witten’s
papers [Wit89], [Wit88].

3.2 The axiomatic point of view
A full mathematical axiomatization of Witten’s notion of a TQFT was first put
forward by Atiyah, [Ati88]. As we will see later, in the various realizations of
the axioms some adjustments are necessary, but the main philosophy of Atiyah’s
TQFTs will survive. In Atiyah’s picture, a (d + 1)-dimensional TQFT (Z, V )
over a field Λ consists of the following data: To every (possibly empty) closed
oriented smooth d-manifold Σ, we associate a vector space V (Σ) over Λ, and
to every (possibly empty) compact oriented smooth (d + 1)-manifold M , we
associate an element Z(M) ∈ V (∂M). The associations satisfy the following
axioms:

1. (Z, V ) is functorial: To every orientation-preserving diffeomorphism

f : Σ→ Σ′

of n-dimensional manifolds, we associate a linear isomorphism

V (f) : V (Σ)→ V (Σ′),

satisfying, for a composition of f : Σ→ Σ′, g : Σ′ → Σ′′, that

V (g ◦ f) = V (g) ◦ V (f).

If f extends to an orientation-preserving diffeomorphism M → M ′ with
∂M = Σ, ∂M ′ = Σ′, then

V (f)(Z(M)) = Z(M ′).

2. (Z, V ) is involutive: Let −Σ denote the n-manifold Σ with the opposite
orientation. Then V (−Σ) = V (Σ)∗.

3. (Z, V ) is multiplicative: For disjoint unions, V (Σ1tΣ2) = V (Σ1)⊗V (Σ2),
and ifM = M1∪Σ3 M2 is obtained by gluing two (d+1)-manifoldsM1,M2
with boundaries ∂M1 = Σ1∪Σ3, ∂M2 = Σ2∪−Σ3 along Σ3 (see Figure 3.1),
then Z(M) = 〈Z(M1), Z(M2)〉, where 〈·, ·〉 denotes the pairing

V (Σ1)⊗ V (Σ3)⊗ V (Σ3)∗ ⊗ V (Σ2)→ V (Σ1)⊗ V (Σ2).

The last axiom allows us to think of (Z, V ) as a functor from a cobordism cate-
gory to the category of vector spaces. Namely, if ∂M = Σ0 ∪ −Σ1 for (possibly
empty) n-manifolds Σ0 and Σ1, then we will view Z(M) as an element

Z(M) ∈ V (Σ0)∗ ⊗ V (Σ1) = Hom(V (Σ0), V (Σ1)).
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Figure 3.1: The gluing axiom.

The axiom also shows that V (∅) = V (∅) ⊗ V (∅), so V (∅) is either trivial or
isomorphic to Λ. We will explicitly require the latter. Similarly, Z(∅) ∈ Λ is
either 0 or 1, and we explicitly require that Z(∅) = 1. Finally, the axioms also
imply that Z(Σ × I) ∈ End(V (Σ)) is idempotent, and we shall require that
Z(Σ× I) = idV (Σ).

3.2.1 Mapping class group representations from TQFTs
The above axioms hint at how to obtain representations of mapping class groups
of closed surfaces from a (2+1)-dimensional TQFT. Namely, let Σ be a closed ori-
ented surface, and let f ∈ Γ(Σ) be the mapping class of an orientation-preserving
diffeomorphism ϕ : Σ→ Σ. Put ρ(f) = V (ϕ) : V (Σ)→ V (Σ), and let

Mϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [ 1

2 , 1]

be the mapping cylinder of ϕ obtained by gluing together two copies of Σ×{1
2}

using ϕ.

Proposition 3.1. The map ρ : Γ(Σ) → End(V (Σ)) is a well-defined repre-
sentation of Γ(Σ). Furthermore, if f is the mapping class of ϕ as above, then
ρ(f) = Z(Mϕ).

Proof. Let ϕt : Σ → Σ be an isotopy between orientation-preserving diffeomor-
phisms ϕ0 and ϕ1. The map Σ× I → Σ× I given by

(x, t) 7→ (ϕ1ϕ
−1
t (x), t)

extends the map ϕ1ϕ
−1
0 t id : Σt−Σ→ Σt−Σ, and it follows from the axioms

that V (ϕ1ϕ
−1
0 ) = id and V (ϕ1) = V (ϕ0).

To prove the last statement, notice that ϕ t id : Σ t −Σ→ Σ t −Σ extends
to an orientation-preserving diffeomorphism Σ× I →Mϕ. It follows that

Z(Mϕ) = V (ϕ) = ρ(f).

Let Tϕ denote the mapping torus of a diffeomorphism ϕ : Σ → Σ. That is,
Tϕ is the result of identifying opposite ends of Σ× [0, 1] using ϕ. It then follows
from the axioms that Z(Tϕ) = trV (ϕ). In particular one finds the dimensions
of the TQFT vector spaces as

dimV (Σ) = trV (id |V (Σ)) = Z(Σ× S1).
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In general, the TQFT defines an invariant of closed oriented (n+ 1)-dimensional
manifolds, often called a quantum invariant. The so-called universal construc-
tion, which we will discuss Section 3.4.4, gives a criterion for extending an in-
variant of closed manifolds to a TQFT functor. The main example in this report
is the skein theoretical construction of [BHMV95]. Before going into details
with this construction, we turn to the abstract category theoretical construction
of [Tur94]. This construction summarizes the work by Reshetikhin and Tu-
raev [RT90], [RT91], giving the historically first concrete realization of Witten’s
TQFT.

3.3 The Reshetikhin–Turaev TQFT
3.3.1 Ribbon categories and graphical calculus
We first set up the relevant categorical framework. The notion of a ribbon
category will encompass the structures relevant for our constructions.

Definition 3.2. A ribbon category is a monoidal category V with a braiding c,
a twist θ, and a compatible duality (∗, b, d).

Let us discuss these concepts one at a time.

Definition 3.3. A monoidal category is a category V with a covariant functor
⊗ : V × V → V associating to two objects V and W an object V ⊗W and to
morphisms f : V → V ′ and g : W →W ′ a morphism f ⊗ g : V ⊗W → V ′⊗W ′,
such that the following properties are satisfied:

1. There exists a unit object 1 satisfying V ⊗ 1 = V , and 1 ⊗ V = V for all
objects V in V.

2. For triples U, V,W of objects, we have (U ⊗ V )⊗W = U ⊗ (V ⊗W ).

3. For morphisms f in V, f ⊗ id1 = id1⊗f = f .

4. For triples f, g, h of morphisms, we have (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).

Remark 3.4. The above definition is really that of a strict monoidal category.
More generally one could consider categories, where the above equalities are
replaced by fixed isomorphisms. By general abstract nonsense, nothing is lost
by requiring equality, and we will avoid the more general case completely.

Figure 3.2: A morphism represented by a diagram.

We introduce now the notion of graphical calculus, and discuss it in parallel
with the axioms of a ribbon category. A morphism

f : W1 ⊗ · · · ⊗Wm → V1 ⊗ · · · ⊗ Vn

in V is represented by a diagram with a box with several downward arrows
as in Figure 3.2. The cases where either m or n is 0 (or both are) will be
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allowed as well; here, the corresponding tensor product will be 1 by convention.
Composing morphisms is represented by stacking diagrams on top of each other,
and tensoring morphims is represented by placing diagrams next to each other;
an example is illustrated in Figure 3.3 where g : U →W ′ and f : W ⊗W ′ → V
are two morphisms, and the diagram represents the morphism

f ◦ (idW ⊗g) : W ⊗ U → V.

Figure 3.3: Composition and tensor products of morphisms.

Figure 3.4: The braiding isomorphisms cV,W .

Definition 3.5. A braiding in V is a family c = {cV,W : V ⊗W → W ⊗ V } of
isomorphisms, represented in graphical calculus by the diagram in Figure 3.4,
satisfying the following properties, where U, V,W, V ′,W ′ are objects of V, and
f : V → V ′, g : W →W ′ are morphisms:

1. cU,V⊗W = (idV ⊗cU,W )(cU,V ⊗ idW ).

2. cU⊗V,W = (cU,V ⊗ idV )(idU ⊗cV,W ).

3. (g ⊗ f)cV,W = cV ′,W ′(f ⊗ g).

As an example, it follows from the definitions that

(idW ⊗cU,V )(cU,W ⊗ idV )(idU ⊗cV,W ) = (cV,W ⊗ idU )(idV ⊗cU,W )(cU,V ⊗ idW ).

This isn’t obvious from the algebraic statements above but is a natural conse-
quence of the existence of graphical calculus and Theorem 3.9 below.

Definition 3.6. A twist in (V, c) is a family θ = {θV : V → V } of isomorphisms,
represented diagrammatically as in Figure 3.5, satisfying the relations

θV⊗W = cW,V cV,W (θV ⊗ θW ),
θV f = fθU

for objects V,U,W and morphisms f : U → V in V.
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Figure 3.5: The twist isomorphisms θV .

Figure 3.6: The duality morphisms bV and dV respectively.

Definition 3.7. A duality in V associates to every object V of V an object V ∗
of V and two morphisms bV : 1→ V ⊗ V ∗ and dV : V ∗ ⊗ V → 1, satisfying the
following:

1. (idV ⊗dV )(bV ⊗ idV ) = idV .

2. (dV ⊗ idV ∗)(idV ∗ ⊗bV ) = idV ∗ .

A duality (∗, b, d) in a category with braiding and twist, (V, c, θ) is called com-
patible with the braiding and twist if furthermore

(θV ⊗ idV ∗)bV = (idV ⊗θV ∗)bV .

In graphical calculus, a downward arrow coloured by an object V ∗ will be used
interchangeably with upward arrows coloured by V , and we will represent bV
and dV by the diagrams in Figure 3.6.

3.3.2 The Reshetikhin–Turaev functor
The graphical calculus hints that we might be able to associate to an oriented
graph in R2 × [0, 1], where strings are coloured by objects of V, and possibly
containing a number of boxes, called coupons, a pair of objects in V, and a
morphism between them. The existence of the Reshetikhin–Turaev functor tells
us that this is indeed the case. In this subsection, this is made somewhat more
precise.

A band is a homeomorphic image in R2 × [0, 1] of [0, 1]× [0, 1], an annulus is
a homeomorphic image of S1 × [0, 1], and a coupon is a band with distinguished
bases [0, 1]× {0} and [0, 1]× {1}.

Definition 3.8. A ribbon (k, l)-graph (or a ribbon graph for short) is an oriented
surface embedded in R2 × [0, 1], decomposed into a union of directed bands,
directed annuli, and coupons, such that bases of bands meet either the planes
R2×{0, 1} or the bases of coupons; see Figure 3.7 (see [Tur94] for a more precise
statement). Here, k bands meet R2 × {0}, and l bands meet R2 × {1}.

To simplify drawings in what follows, we will often picture bands and annuli
in ribbon graphs using the blackboard framing as in Figure 3.7; here, the 1-
dimensional graph represents the ribbon graph obtained by letting bands and
annuli be parallel to the plane of the picture. This is possible since ribbon
graphs are always assumed to be orientable. Note that the theory of ribbon
graphs therefore in particular contains the theory of banded oriented links in S3.
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Figure 3.7: An example of a (1, 1)-ribbon graph and how to represent it by a
1-dimensional graph using the blackboard framing.

Figure 3.8: The colouring of a coupon.

Assume that V is a monoidal category with duality. A colouring1 of a ribbon
graph is an association of an object of V to every non-coupon band and every
annulus, and an association of a morphism

f : V ε1
1 ⊗ · · · ⊗ V εmm →W ν1

1 ⊗ · · · ⊗W νn
n

to every coupon meeting bands with colours Vi,Wj as in Figure 3.8. Here,
εi, νj ∈ {−1, 1}, and V 1 = V , V −1 = V ∗ for objects V . For every Vi,Wj , the
appropriate sign is determined by the orientation of the bands in question, the
sign being positive, if the band is directed downwards, and negative otherwise.
This turns the set of coloured ribbon graphs into a monoidal category denoted
RibV . Objects are sequences ((V1, ε1), . . . , (Vm, εm)), εi ∈ {−1, 1}, and mor-
phisms η → η′ are isotopy types of coloured ribbon graphs meeting in R2 × {0}
the sequence η, and similarly in R2×{1} the sequence η′, where the numbers εi
determine the orientations of the bands. Here composition is given by stacking
graphs and tensor product is given by placing graphs next to each other.

Theorem 3.9. Let V be a ribbon category. There is a covariant functor

F = FV : RibV → V

preserving tensor product, transforming (V, ε) to V ε, and transforming mor-
phisms to the natural corresponding morphisms in V: Namely, consider the dia-
grams of graphical calculus as ribbon graphs, taking parallels as above. Then the
functor transforms these graphs to the morphisms of V represented by the dia-
grams. Furthermore, imposing a few conditions outlined in [Tur94], the functor
is unique.

For a morphism f : V → V in a ribbon category, define tr(f) : 1→ 1 by

tr(f) = dV cV,V ∗((θV f)⊗ idV ∗).

1In the language of [Tur94], this is a v-colouring.
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Figure 3.9: The coloured ribbon graph Ωf corresponding under F to tr(f).

Then F (Ωf ) = tr(f), where Ωf is the coloured ribbon graph shown in Figure 3.9.
It follows immediately that tr(fg) = tr(gf) and tr(f ⊗ g) = tr(g ⊗ f). Define

dim(V ) = tr(idV ).

Then dim(V ⊗W ) = dim(V ) dim(W ).

3.3.3 Modular categories
As already mentioned, our quest is to find invariants of 3-manifolds fitting into
the framework of TQFT. The operator invariants of coloured ribbon graphs
constructed above are too general to be useful for this purpose; rather, the
ribbon categories used in the construction should satisfy several other conditions,
summed up in the notion of a modular category.

Definition 3.10. An Ab-category is a monoidal category V such that the set
Hom(V,W ) of morphisms V →W has the structure of an additive abelian group
and such that composition is bilinear. In particular, this holds for End(1), and
this group obtains the structure of a (commutative) ring, with multiplication
being given by composition; it is denoted K and called the ground ring of V.

Definition 3.11. An object V of a ribbon Ab-category V is called simple, if the
map k 7→ k ⊗ idV defines a bijection K → Hom(V, V ).

Definition 3.12. Let {Vi}i∈I be a family of objects in a ribbon Ab-category V.
An object V of V is dominated by {Vi}, if there exists a finite subfamily {Vi(r)}r
and morphisms fr : Vi(r) → V, gr : V → Vi(r) such that idV =

∑
r frgr.

Definition 3.13. A modular category is a ribbon Ab-category V with a finite
set of simple objects {Vi}i∈I satisfying the following axioms:

1. 1 ∈ {Vi}i∈I .

2. For any i ∈ I, there exists i∗ ∈ I such that Vi∗ is isomorphic to (Vi)∗.

3. All objects of V are dominated by {Vi}i∈I .

4. The matrix S with entries Si,j = tr(cVj ,VicVi,Vj ) ∈ K is invertible over K.

Let (V, {Vi}i∈I) be a modular category. We are now in a position to define
the link invariant that will give rise to our 3-manifold invariant. Let L be an
oriented banded m-component link in S3, viewed as a link in R2 × [0, 1]. Let
col(L) be the finite set of all possible colourings of L by elements of {Vi}i∈I . For
λ ∈ col(L), let Γ(L, λ) be the coloured ribbon (0, 0)-graph obtained from L by
colouring it according to λ. Now F (Γ(L, λ)) is an element of K, and we define

{L} =
∑

λ∈col(L)

m∏
n=1

dim(λ(Ln))F (Γ(L, λ)) ∈ K.

Note that this expression does not depend on the orientation of L.
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3.3.4 Surgery and 3-manifold invariants
Let L be an m-component banded link in S3. Choose a regular closed neigh-
bourhood U of L, consisting of m disjoint solid tori U1, . . . , Um. Each of these
are homeomorphic to S1×D2 with boundary homeomorphic to S1×S1. Choose
homeomorphisms hi : S1 × S1 → S1 × S1 and form the space

ML = (S3 \ U) ∪hi (tmi=1D
2 × S1)

which is the disjoint union of S3 \ U and m copies of solid tori D2 × S1, these
two spaces being identified along their common boundary tmi=1S

1 × S1 using
the homeomorphisms hi. The resulting topological space ML is a closed ori-
entable manifold. The space ML constructed as such depends of course on the
homeomorphisms involved in the gluing. Using the banded structure of L, one
canonically obtains particular homeomorphisms hi depending only on L, and the
resulting surgery is referred to as integral surgery. Using this, we say that ML

is obtained by surgery on S3 along L.

Theorem 3.14 (Lickorish, Wallace). Any closed connected oriented 3-manifold
can be obtained by (integral) surgery on S3 along a banded m-component link.

Let L be an oriented m-component banded link. Let σ(L) be the signature
of the linking matrix Aij = lk(Li, Lj) consisting of linking numbers of the com-
ponents. Here, the linking number of a banded knot Li = K × [0, 1] with itself
is defined to be the linking number of its boundary knots K ×{0} and K ×{1}.
Note that σ(L) is independent of the orientations of the components.

Let as before (V, {Vi}i∈I) be a modular category. Assume that there is an
element D ∈ K called a rank satisfying D2 =

∑
i∈I(dim(Vi))2. Since the Vi

are simple, each twist θVi can be identified with an element vi ∈ K, which is
invertible, since θVi is an isomorphism. Now, set

∆ =
∑
i∈I

v−1
i (dim(Vi))2 ∈ K.

The dimensions dim(Vi) are invertible because of axiom (4) of a modular cate-
gory, and it follows that both D and ∆ are invertible in K.

We can now define the quantum invariant of 3-manifolds.

Theorem 3.15 (Reshetikhin–Turaev). Let M be a closed connected oriented
3-manifold obtained by surgery on S3 along a banded link L. Then

τ(M) = ∆σ(L)D−σ(L)−m−1{L} ∈ K

is a topological invariant of M .

Finally, we extend the invariant to an invariant of 3-manifolds containing
coloured ribbon (0, 0)-graphs. Let M be a closed connected oriented 3-manifold
containing a coloured ribbon graph Ω. Assume that M is the result of surgery
along an m-component oriented link L in S3, and assume by applying isotopy
that Ω does not meet the regular neighbourhood U of L used in the surgery, so
we can view Ω as a ribbon graph in S3 \ U . Now, let

{L,Ω} =
∑

λ∈col(L)

m∏
n=1

dim(λ(Ln))F (Γ(L, λ) ∪ Ω) ∈ K.

As before, this will not depend on the orientation of L or the numbering of the
components.
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Theorem 3.16. Let (M,Ω) be as above. Then

τ(M,Ω) = ∆σ(L)D−σ(L)−m−1{L,Ω} ∈ K

is a topological invariant of the pair (M,Ω).

The proof of this theorem uses the theorem by Kirby stating that closed
oriented manifolds obtained by surgery along banded links L and L′ are homeo-
morphic (by orientation-preserving homeomorphism) if and only if L and L′ are
related by a certain sequence of moves on banded links called Kirby moves.

3.3.5 Modular categories from quantum groups and TQFT
The above approach defines a quantum invariant for any modular category.
For completeness, we briefly include the main points of the construction by
Reshetikhin and Turaev of the modular category, using quantum groups. A
streamlined introduction giving all details is available in [Tur94].

For any given Hopf algebra A over a commutative unital ring K, one might
consider the category of representations of A, denoted Rep(A), with objects being
finite rank A-modules and morphisms being A-homomorphisms. This category
is a monoidal Ab-category. Furthermore, the category has a natural duality
pairing. To provide this category with a braiding, the algebra should further
have the structure of a quasitriangular Hopf algebra; this means that there is
a distinct element R ∈ A⊗2 (often refered to as an R-matrix) satisfying certain
conditions. Finally, to get a twist in Rep(A), one fixes an element v in the center
of A satisfying again particular conditions. With all of these in place, Rep(A)
acquires the structure of a ribbon Ab-category. For the representation category
to be a modular category, we furthermore need a finite collection of finite rank A-
modules {Vi}i∈I that are simple, in the sense that their only endomorphisms are
multiplications by scalars and which furthermore satisfy the following conditions:

1. For some element 0 ∈ I, we have V0 = K (where A acts by the Hopf algebra
counit).

2. For every i ∈ I, there exists i∗ ∈ I so that Vi∗ and (Vi)∗ are isomorphic.

3. For every k, l ∈ I the tensor product Vk⊗Vl splits as a finite direct sum of
Vi, i ∈ I and a module V satisfying trq(f) = 0 for any f ∈ End(V ). Here,
trq denotes the trace defined in Section 3.3.2.

4. Denoting by Si,j the quantum trace of x 7→ flipA,A(R)Rx on Vi ⊗ Vj , we
obtain an invertible matrix [Si,j ]i,j∈I . Here, flipV,W : V ⊗W → W ⊗ V is
the homomorphism defined by v ⊗ w 7→ w ⊗ v.

With all of these in place, we obtain exactly what we are looking for: If a
collection of A-modules as above exist, then Rep(A) has a (non-full) modular
subcategory.

It thus remains to construct Hopf algebras satisfying all of the above condi-
tions. These arise in the language of quantum groups. While quantum groups
can be defined for general simple Lie algebras, let us consider only sl2 for which
the construction is known to work out. The quantum group Uqsl2 is defined to
be the algebra over C generated by elements K,K−1, E, F with relations

K−1K = KK−1 = 1,
KE = q−1EK, KF = qFK,

EF − FE = K −K−1

q − q−1 .
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Assume for simplicity that q is a primitive l’th root of unity with l even; this
turns out to be the most simple setting, and in general one cannot hope for
the construction to work. The quantum group Uqsl2 is not quite good enough
for our purposes, and we consider instead the quotient Ũqsl2 of Uqsl2 by the
two-sided ideal generated by El/2, F l/2,Kl − 1. Then Ũqsl2 can be endowed
with an R-matrix and a twist satisfying the necessary conditions for its rep-
resentation category to give a modular category. Here, the role of the simple
modules described above will be played by certain irreducible Ũqsl2-modules.
The construction for sl2 was first carried out in [RT90], [RT91], and has since
be generalized to other Lie algebras.

Having constructed now a collection of quantum invariants depending on a
complex root of unity, we can appeal to the general arguments of the following
sections to extend them to topological quantum field theories. Using the abstract
framework of ribbon graphs it is also possible to describe the TQFT explicitly.
We will not need this either but the idea of the construction is as follows: Given a
modular category V with simple objects {Vi}i∈I , we associate to a closed oriented
surface Σ of genus g the module

V (Σ) =
⊕

(i1,...,ig)∈Ig
Hom

(
1,

g⊗
r=1

(Vir ⊗ V ∗ir )
)

To a compact oriented 3-manifoldM with boundary, ∂M = Σ1t−Σ2,M possibly
containing a ribbon graph, we now associate a homomorphism V (Σ1)→ V (Σ2)
by gluing to M handlebodies with boundaries Σ1 and Σ2 and adding to the
handlebodies particular uncoloured ribbon graphs in such a way that a choice of
colouring corresponds to a linear map τ(M,Σ1,Σ2) : V (Σ1)→ V (Σ2), using the
quantum invariant τ on the closed manifold arising as the result of the gluing.
The details of the construction are given in [Tur94, Ch. IV], and we simply
record the following. For l even, let (τl, Vl) denote the result of this construction
using the representation theory of Uq(sl2).

Theorem 3.17. (τl, Vl) defines a (2 + 1)-dimensional TQFT.

3.4 Skein theory
We now switch gears again and turn to the skein theoretical construction of the
quantum invariant which is in fact equivalent to the one by Reshetikhin–Turaev
but more suited for our purposes. The version we describe was constructed in
[BHMV92], [BHMV91] and proven to lead to a TQFT in [BHMV95].

3.4.1 Skein modules
Definition 3.18. Let M be a compact oriented 3-manifold. The Kauffman
module K(M) of M is the Z[A,A−1]-module generated by all isotopy classes of
banded links in M quotiented by the skein relations shown in Figure 3.10. Here,
equivalences are assumed to take place in some small 3-ball in M .

It is well-known that

K(S3) ∼= Z[A,A−1].

The skein class of a banded link L in S3 is called its Kauffman bracket and
is denoted 〈L〉. For a closed surface Σ, K(Σ × I) is a Z[A,A−1]-algebra with
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Figure 3.10: The skein relations.

multiplication given by stacking copies of Σ×I. For the solid torus, the Kauffman
module will be denoted B and is the algebra

B = K(S1 × I × I) ∼= Z[A,A−1][z].

Under the latter isomorphism, zn corresponds to n parallel unknotted longitudes
in the solid torus2. The Kauffman module of a disjoint union of n solid tori is
B⊗n.

Definition 3.19. Let L be an n-component banded link in S3 with ordered com-
ponents L1, . . . , Ln, and let zai , . . . , zan be monomials in B. Let 〈za1 , . . . , zan〉L
be the result of replacing each Li by ai parallel copies and taking the Kauffman
bracket of the resulting link in S3. Extending linearly, we obtain themeta-bracket

〈·, . . . , ·〉L : B⊗n → Z[A,A−1].

Diagrammatically, this value will be pictured as in Figure 3.11. We say that
Li is coloured by ai.

Figure 3.11: The metabracket of a 2-component link whose components are
coloured by Az + 2 and z2 + z3.

3.4.2 The quantum invariant
Let t : B → B be the map induced on B by a twist about a meridian of the solid
torus. We then obtain the following (see [BHMV92]).

Lemma 3.20. There is a basis ei, i = 0, 1, . . . , of B consisting of monic poly-
nomials satisfying e0 = 1, e1 = z, zej = ej+1 + ej−1. The ei are eigenvectors
for t with eigenvalues µi = (−1)iAi2+2i.

This basis arises naturally from idempotents in the Temperley–Lieb algebra,
as we will see in the next section.

From now on, we will assume that A is a primitive root of unity of order 2p for
some p ≥ 1. In other words, we consider the above construction with coefficients
in Λp = Z[A,A−1]/ϕ2p(A), where ϕ2p is the 2p’th cyclotomic polynomial, and
we let Bp = B ⊗ Λp. Let 〈·, ·〉 be the bilinear form on Bp defined by using the
meta-bracket on the Hopf link, let Np denote the left-kernel of this form, and let
Vp = Bp/Np.

2Here and in the following, we will not explicitly distinguish between banded links and
isotopy classes of banded links.
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Theorem 3.21 ([BHMV92]). The meta-bracket factors through V ⊗np , and t
descends to a map t : Vp → Vp. Furthermore, Vp is a finite-dimensional algebra
of rank p for p = 1, 2 and of rank b(p− 1)/2c for p ≥ 3.

We are now in a position to define the 3-manifold invariant. For a banded
link in S3, we denote by b+(L) and b−(L) the number of positive, respectively
negative, eigenvalues of the linking matrix of L as defined in Section 3.3.4. Define
an element of Vp (except for p = 2, where it is an element of V2⊗Z[ 1

2 ]) by Ω1 = 1,
Ω2 = 1 + z

2 , and

Ωp =
n−1∑
i=0
〈ei〉ei

for p ≥ 3, where n = b(p − 1)/2c is the rank of Vp. It turns out that 〈t±1(Ωp)〉
are invertible elements of Λp[ 1

p ]. Now, let ML be a closed oriented 3-manifold
obtained by surgery along L, and define an element of Λp[ 1

p ] by

θp(ML) = 〈Ωp, . . . ,Ωp〉L
〈t(Ωp)〉b+(L)〈t−1(Ωp)〉b−(L) . (3.1)

Theorem 3.22 ([BHMV92]). The expression θp defines an invariant of closed
oriented 3-manifolds.

The proof once again relies on Kirby’s theorem on how links giving rise to
homeomorphic manifolds via surgery are related by certain moves. The right
hand side of (3.1) is almost directly seen to be an invariant under Kirby moves,
since in fact Ωp satisfies 〈t±1(Ωp), t±1(b)〉 = 〈t±1(Ωp)〉〈b〉 for all b ∈ B (see also
[BHMV92, Prop. 2.1]).

As before, we can extend the above invariant to an invariant of 3-manifolds
with banded links. Let K ⊆ ML be a banded link viewed as a banded link in
S3 \ L.

Theorem 3.23 ([BHMV91]). The element of Λp[ 1
p ] defined by

θp(ML,K) = 〈Ωp, . . . ,Ωp, z, . . . , z〉L∪K
〈t(Ωp)〉b+(L)〈t−1(Ωp)〉b−(L)

is an invariant of closed oriented 3-manifolds containing banded links.

3.4.3 The Temperley–Lieb algebra
Definition 3.24. The n’th Temperley–Lieb algebra, denoted TLn, is the skein
module K(I × I × I, 2n) of the unit ball, where we fix 2n ordered small intervals
on the boundary. That is, TLn consists of isotopy classes of banded tangles
meeting the boundary in the 2n intervals. The algebra structure is given by
using the ordering to the divide the 2n intervals into two sets of n intervals, and
gluing together copies of I × I × I, such that n intervals are glued to n intervals.

The Temperley–Lieb algebra TLn is generated by n elements 1, a1, . . . , an−1
shown in Figure 3.12. Here, as before, arcs in the diagram will represent bands
parallel to the plane of the diagram. By definition, an integer i next to an arc
corresponds to taking i parallels of the arc in the plane.

Assume as before that A is a primitive 2p’th root of unity, p > 2, so that
A2 −A−2 is invertible. Define ∆i by

∆i = (−1)iA
2(i+1) −A−2(i+1)

A2 −A−2 .
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Figure 3.12: Generators of the Temperley–Lieb algebra TLn.

If A is chosen so that all ∆0, . . . ,∆n−1 are non-zero, then there exists a non-zero
element f (n) ∈ TLn, called a Jones–Wenzl idempotent, satisfying

(f (n))2 = f (n), f (n)ei = eif
(n) = 0, 1 ≤ i ≤ n− 1.

In particular, these will exist if A4 is not a k’th root of unity for any k ≤ n.
Diagrammatically, we denote f (n) as in Figure 3.13. The proof of the existence
of the f (n) goes by inductively defining f (n+1) as in Figure 3.14. This recursive
formula is due to Wenzl.

Figure 3.13: The diagram for a Jones–Wenzl idempotent.

Figure 3.14: Wenzl’s recursive formula for f (n+1).

We define a map TLn → B by placing I × I × I in the solid torus and taking
the closure, i.e. joining the n intervals on the top to the n intervals on the
bottom by parallel arcs in the torus, encircling the torus. The image of f (n) is
exactly the en used to define Ωp, and 〈en〉 = ∆n. The last equality follows by
induction on the equality from Lemma 3.20 since 〈zk〉 = (−A2 −A−2)k.

3.4.4 The universal construction and TQFT
We turn now to the question of how to turn a 3-manifold invariant into a TQFT.
The main focus here will be on a slightly modified version of the invariant above.
We begin by generalizing the axioms presented in Section 3.2.

Consider as before a functor (Z, V ) from a cobordism category associating to
a d-manifold Σ this time a k-module for some commutative unital ring k with a
conjugation mapping λ 7→ λ. To an equivalence class of a cobordism M between
two d-manifolds, ∂M = −Σ1 t Σ2, we associate a linear map Z(M) : Σ1 → Σ2.
Here, cobordisms M1 and M2 between Σ1 and Σ2 are considered equivalent if
there is an isomorphism M1 → M2 acting identically on the boundary. The
isomorphism will of course be required to preserve whatever structure the cobor-
disms are endowed with; typically they will simply be diffeomorphisms, but as
we will see, cobordisms might contain certain extra structures.
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Assume that V (∅) = k. In this case, when ∂M = Σ, we write Z(M) for
Z(M)(1) ∈ V (Σ), and for closed M , let 〈M〉 denote the corresponding element
of k. We will call (Z, V ) a quantization functor if furthermore there is a non-
degenerate sesquilinear form 〈·, ·〉Σ on V (Σ) such that for any (d+ 1)-manifolds
M1,M2 with ∂M1 = ∂M2 = Σ, we have

〈Z(M1), Z(M2)〉Σ = 〈M1 ∪Σ (−M2)〉.

If the set {Z(M) | ∂M = Σ} generates V (Σ), we say that the functor is
cobordism generated.

On the other hand, a k-valued invariant 〈·〉 of closed (d + 1)-manifolds is
called multiplicative if 〈M1 t M2〉 = 〈M1〉〈M2〉 and it is called involutive if
〈−M〉 = 〈M〉.

Note that the invariant coming from a quantization functor is always both
multiplicative and involutive. In fact, the converse is also true:

Proposition 3.25 (The universal construction). Any multiplicative and involu-
tive invariant 〈·〉 of closed cobordisms extends to a unique cobordism generated
quantization functor.

Proof. Let Σ be a d-manifold, and let V(Σ) be the k-module freely generated by
all cobordisms from ∅ to Σ. For M1,M2 ∈ V(Σ), put

〈M1,M2〉Σ = 〈M1 ∪Σ (−M2)〉.

This extends to a form on V(Σ) which is sesquilinear by the involutivity of the
invariant. Let V (Σ) be the quotient of V(Σ) by the left kernel of this form. The
form then descends to a non-degenerate sesquilinear form on V (Σ). Finally, if
M is a cobordism from Σ1 to Σ2, define Z(M) : V (Σ1)→ V (Σ2) by

Z(M)([M ′]) = M ∪Σ1 M
′.

Then Z(M) is well-defined. Since furthermore multiplicativity of the invariant
ensures that V (∅) = k, the associations (Z, V ) give a unique cobordism generated
quantization functor.

Note that for any cobordism generated quantization functor we obtain a map

V (Σ1)⊗ V (Σ2)→ V (Σ1 t Σ2). (3.2)

We are now able to give the refined definition of a TQFT.

Definition 3.26. A cobordism generated quantization functor is called a topo-
logical quantum field theory if the map (3.2) is an isomorphism, if V (Σ) is free
of finite rank for all Σ, and if the pairing 〈·, ·〉Σ determines an isomorphism
V (Σ)→ V (Σ)∗.

It turns out that the invariants θp constructed in Section 3.4.2 need to be
modified slightly to fit into the framework of TQFT. More precisely, the invari-
ants have so-called framing anomalies, and the axioms hold only up to invert-
ible scalar factors. The solution to this is to extend the cobordism category,
requiring the manifolds in question to have certain extra structures. For our
purpose, the relevant cobordism category is the category Cp1

2 of smooth closed
oriented 2-manifolds (Σ, l) with p1-structure (see [BHMV95, App. B] for details
on these) and containing a set of banded intervals l, with bordisms being compact
smooth oriented 3-manifolds (M,L) extending the p1-structures of the bound-
ary components and containing banded links L meeting the intervals specified
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in the boundary. In this category, cobordisms are equivalent if they are diffeo-
morphic through an orientation-preserving diffeomorphism, having isotopic links
and p1-structures homotopic relative to the boundary. We will not need these
p1-structures explicitly and rather than defining them precisely, we only observe
the following:

Proposition 3.27. For any closed 3-manifold M there is a 1-1-correspondence,
denoted σ, from (homotopy classes of) p1-structures on M to the integers. For
2-manifolds, p1-structures are unique (up to homotopy).

Let kp = Z[A,A−1, κ, 1
p ]/(ϕ2p(A), κ6− u), where u = A−6−p(p+1)/2. Then kp

is a ring with involution A 7→ A−1, κ 7→ κ−1. Define η ∈ kp by η = κ3 for p = 1,
η = (1−A)κ3/2 for p = 2, and

η = 1
2 (Aκ)3(A2 −A−2)p−1

2p∑
m=1

(−1)mA−m
2
,

for p = 3. Let bi(M) denote the i’th Betti number of a manifold M . We then
obtain the following main theorem of [BHMV95].

Theorem 3.28. Let M = (M,α,L) be a closed 3-manifold with p1-structure
α and L a banded link, and write (M,L) =

⊔n
i=1(Mi, Li), where the Mi are

connected components of M . Then the expression

〈M〉p = ηb0(M)+b1(M)κσ(α)
n∏
i=1

θp(Mi, Li),

defines a multiplicative and involutive invariant on Cp1
2 and thus gives rise to

a quantization functor (Zp, Vp). Furthermore, if p > 2 is even, the functor is a
TQFT.

Remark 3.29. The resulting TQFT is known as the SU(2)-TQFT since it sup-
posedly realizes Witten’s Chern–Simons theory with gauge group G = SU(2).
In the case where p is odd, the above theorem fails to hold, as the map

Vp(Σ1, l1)⊗ Vp(Σ2, l2)→ Vp((Σ1, l1) t (Σ2, l2))

fails to be an isomorphism, unless one of the li has an even number of com-
ponents. Thus, in this case, we obtain a TQFT, called the SO(3)-TQFT by
restricting to the cobordism category Cp1

2 (even) where objects are surfaces con-
taining an even number of embedded intervals and morphisms are as before.

In fact, the SU(2)-theory is completely equivalent to the one constructed
by Reshetikhin and Turaev for the quantum group Uq(sl2). Note also that the
TQFT constructed in this section fits into the general framework of modular
functors, even though we took a different approach. See [Tur94, Ch. XII] for
details. More general SU(n) theories have been constructed in the skein theo-
retical picture using the HOMFLY polynomial skein relations rather than the
Kauffman bracket. See [Yok97], [Bla00].

In the following, we will largely ignore the p1-structures in the definition of
〈·〉 and consider it as an invariant defined only up to the framing anomalies. In
general, anomalies could be dealt with in a variety of ways. For example, Turaev
[Tur94, Ch. IV] describes the anomalies following an idea by Walker involving
choices of Lagrangian subspaces in the homologies of the boundary surfaces,
thus imposing extra structure on the cobordisms. Similarly, Roberts [Rob94]
replaces cobordisms by framed cobordisms by changing the set of Kirby moves.
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Either way, using the general construction of mapping class group representations
described in Section 3.2.1, we can only expect the map ρ to be a projective
representation, i.e. it will satisfy ρ(fg) = Kρ(f)ρ(g) for some invertible element
K in the ground ring, depending on f and g.

3.4.5 Properties of the TQFT
We first note the following general fact about TQFTs which should be true by
the general philosophy of Section 3.2.1. See [BHMV95, Thm. 1.2].

Theorem 3.30. Let (Z, V ) be a TQFT in the sense of Definition 3.26, and let
M be a cobordism from Σ to Σ. Let MΣ be the manifold obtained by identifying
the two copies of Σ. Then 〈MΣ〉 = trZ(M).

In order to be able to do explicit calculations, we describe a basis of the
V (Σ, l) in terms of handlebodies containing particular banded links.

Throughout the rest of this chapter, consider the case where p is an even
number p = 2n + 2, and let Cp = {0, . . . , n − 1}. A triple (a, b, c) of elements
from Cp is called admissible, if a + b + c is even, |a − b| ≤ c ≤ a + b, and
a+ b+ c < 2n. A colouring of a surface (Σ, l) in Cp1

2 is an assigment of a colour
cj ∈ Cp to every component lj of l. A banded trivalent graph G in a cobordism
M of Cp1

2 is a graph contained in an oriented surface SG ⊆M such that

1. The graph G meets ∂M transversally in the set of monovalent vertices of
G.

2. Every vertex of G in the interior of M has valency 2 or 3.

3. The surface SG is a regular neighbourhood of G in SG, and SG ∩ ∂M is
a regular neighbourhood of G ∩ ∂M in SG ∩ ∂M .

A colouring of a banded trivalent graph G is a colouring of edges of G by elements
of Cp such that colours of edges meeting in 2-valent vertices coincide, and such
that colours of edges meeting a 3-valent vertex form an admissible triple.

We view a coloured graph G ofM as a skein in the following way: The graph
determines a collection of coloured embedded intervals l in ∂M . Let lc be the
expansion of l in Σ obtained by taking cj parallel copies of the component lj ,
where cj is the colouring of lj . The expansion of (M,G) is the element of the
module K(M, lc) (consisting of skeins in M meeting lc) obtained by splitting
the graph G into a union of I-shaped, O-shaped, and Y-shaped pieces and per-
forming certain replacements: An I-shaped piece is a single edge coloured by
i ∈ Cp with two boundary vertices and gets replaced by the skein coloured by
the idempotent f (i), viewed as a skein element in a ball in M . An O-shaped
piece consists of a single i-coloured edge and a 2-valent vertex and similarly gets
replaced by ei, the closure of f (i). Finally, the Y-shaped pieces consist of 3 edges
meeting in a trivalent vertex and here we make the expansion in Figure 3.15.
The admissibility constraints ensures that this last assignment is possible, and
piecing the various components back together we obtain an element of K(M, lc).
Furthermore, this element does not depend on the decomposition of G since the
f (i) are idempotents. As always, the banded structures of the banded graphs
are implicit in all diagrams.

We can define an invariant of closed oriented 3-manifolds with p1-structures
containing a banded trivalent graph by expanding the graph and using the invari-
ant 〈·〉p. The invariant obtained this way will be multiplicative and involutive
and thus define a quantization functor (Zcp, V cp ) on the extended category Cp1,c

2 ,
where surfaces and cobordisms have coloured structure. Since the invariants
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Figure 3.15: A Y-shaped piece with edges coloured by i, j, and k. In this
example, i = 4, j = 3, k = 3.

coincide, for a surface with structure (Σ, l) viewed as a surface with coloured
structure by colouring the components of l by 1 ∈ Cp, the vector spaces V cp (Σ)
and Vp(Σ) will coincide as well. Therefore, we simply write Zp = Zcp, Vp = V cp ,
and 〈·, ·〉Σ for the sesquilinear form. Furthermore, for a given cobordism with
coloured structure, we will not distinguish between it and its expansion, when
the meaning is clear from the context.

Let (Σ, l, c) be a surface with coloured structure, and let γ be a simple closed
curve in Σ. Denote by iΣ(γ)j the result of cutting Σ along γ, capping off the
two boundary components by disks containing 1-component banded intervals
coloured by i and j. Representing an element of V (iΣ(γ)i) by a manifold M ,
we obtain an element of V (Σ) represented by the manifold M ′ obtained by
identifying the two disks, so V (iΣ(γ)i) embeds in V (Σ).

Theorem 3.31 (Coloured splitting theorem). Let γ ⊆ Σ as above. Cutting
along γ gives an orthogonal decomposition

Vp(Σ) =
n−1⊕
i=0

Vp(iΣ(γ)i).

We end this chapter by describing explicitly a basis of the vector spaces
Vp(Σ, l, c).

Theorem 3.32. Let (Σ, l, c) be a connected closed surface with coloured struc-
ture. Let H be a handlebody with boundary Σ, and let G be a coloured banded
graph with only 1-valent and 3-valent vertices, such that 1-valent vertices corre-
spond to the intervals li, and such that H is as a tubular neighborhood of G (see
Figure 3.16). Then Vp(Σ, l, c) has an orthogonal basis consisting of colourings of
G compatible with the colouring of l in the sense that colourings of edges incident
to an interval in Σ are coloured by the colour of the interval.

Figure 3.16: The standard basis graph of a surface (Σ, l, c). Here Σ has genus 2
and l consists of a single component.



Chapter 4
Quantum representations

4.1 Skein theory revisited
We begin this chapter by describing two ways the skein theoretical construction
of TQFTs gives rise to projective representations of the mapping class group of
a surface. Let p > 2 be even, and let (Zp, Vp) be the corresponding TQFT.

Let (Σ, l, c) be a surface with coloured structure, and let (H,G) be one of
the basis elements of Theorem 3.32. That is, H is a handlebody with boundary
Σ, and G is a banded trivalent graph in H endowed with a colouring compatible
with that of Σ. By the general construction in Section 3.2.1, an action of the
mapping class group is given by gluing to H the mapping cylinder Mϕ for a
homeomorphism ϕ : Σ→ Σ. In the case where l = ∅, this immediately defines a
new element of Vp(Σ, l, c), and in the case l 6= ∅, we extend the coloured structure
in H to H ∪Mϕ by extending the graph G to a graph

G ∪ (l × [0, 1
2 ] ∪ϕ l × [ 1

2 , 1]) ⊆ H ∪Mϕ,

and colouring the new edge compatibly. Here, mapping classes are assumed
to preserve the coloured structure; equivalently, we consider mapping classes of
(Σ, l, c) viewed as a surface with boundary, each boundary component encircling
a component of l.

Now, it is known that the mapping cylinder of a Dehn twist about a curve γ
in Σ can be presented by surgery on Σ× [0, 1] along the curve γ̃×{ 1

2}. Here, γ̃ is
the banded link obtained by a full negative twist to the curve γ viewed as a link
with the blackboard framing with respect to the surface Σ×{ 1

2}. In the language
of surgery, γ̃ is the curve γ with framing −1 with respect to Σ × { 1

2}. Thus,
from the skein theoretical construction of TQFT, the action ρp(tγ) of a Dehn
twist about γ on (H,G) is given by adding the banded link γ̃ coloured by Ωp
to the handlebody as in Figure 4.1. We could now simply define the projective
action of a general mapping class f by writing it as a product of Dehn twists,
f = tα1 · · · tαn , and letting

ρp(f) = ρp(tα1) · · · ρp(tαn).

Working in the skein module of the handlebody, it is now a feasible task to
compute the action of a word of Dehn twists on Vp by hand, at least for small
enough values of p.

40
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Figure 4.1: The action on Vp of a meridian twist in the torus on the handlebody
element containing the skein corresponding to en. We analyze this example
further in Lemma 4.3.

4.1.1 On notation
Recall that we defined the TQFTs (Zp, Vp) only for p > 2 even, and that these
arose from evaluating the Kauffman bracket at a primitive 2p’th root of unity.
Throughout the rest of this report, we will make a somewhat gross abuse of
notation and write (Zk, Vk) for the TQFT (Zp, Vp), where p = 2k + 4. That
is, for every k = 0, 1, . . . , we let (Zk, Vk) denote the SU(2)-TQFT at level k
obtained by evaluating the Kauffman bracket at a primitive 4k + 8’th root of
unity.

4.1.2 Roberts’ construction
Roberts [Rob94] has given an alternative description of the mapping class group
action which in some cases is more suited for direct calculations. Furthermore,
its construction is significantly more elementary, lending itself not to the ab-
stract setup of TQFT and surgeries but only to concrete manipulations with
handlebodies.

For a compact oriented 3-manifold M , denote by Kξ(M) the complex vector
space obtained from K(M) by the homomorphism A 7→ ξ for a non-zero complex
number ξ. Assume in the following that ξ is a primitive root of unity of order
4k+8. In this case, Kξ(S3) is isomorphic to C. Let Σ be a closed oriented surface
embedded into S3, such that its complement is a union of two handlebodies H
and H ′. We define a bilinear form

〈·, ·〉 : Kξ(H)×Kξ(H ′)→ Kξ(S3) = C

on generators as follows: If x ∈ Kξ(H), x′ ∈ Kξ(H ′) represent links L,L′ in
H,H ′ then 〈x, x′〉 is given by the value of L ∪ L′ in K(S3), considering H and
H ′ as subsets of S3. Taking the quotient by the left kernel in Kξ(H) and right
kernel in Kξ(H ′) we obtain a non-degenerate pairing

〈·, ·〉 : Vk(Σ)× V ′k(Σ)→ C.

It turns out that the Vk(Σ) are finite-dimensional vector spaces, and by Propo-
sition 1.9 of [BHMV95], they are isomorphic to the ones arising from TQFT.

We now proceed to describe the action of the Dehn twists on Vk(Σ). Let K
denote the set of Dehn twists about curves in Σ bounding discs in H, and let K ′
be the set of those bounding discs in H ′. Elements of K extend in a unique way
to homeomorphisms of H, giving rise to an action by such Dehn twists on Kξ(H)
preserving the left kernel of the above form. Therefore, the group generated by
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the Dehn twists in K act on Vk(Σ). Denote this action by ρk. To describe the
action of any element of the mapping class group, it now suffices to describe the
action by elements of K ′, since elements of K ∪K ′ generate the mapping class
group. For an element f ′ ∈ K ′, define ρk(f ′) by

〈ρk(f ′)(x), y〉 = 〈x, (f ′)−1(y)〉,

for x ∈ Vk(Σ), y ∈ V ′k(Σ). Since the form is non-degenerate, this determines ρk
on the group generated by K ′.

An element of the mapping class group could be written as a word in Dehn
twists in more than one way, and for a mapping class f = tα1 · · · tαn , tαi ∈ K∪K ′,
one should verify that

ρk(f) := ρk(tα1) · · · ρk(tαn),

is well-defined – at least up to a scalar factor, so that it gives rise once again
to a projective representation of Γ(Σ). This is Theorem 3.12 of [Rob94]. As
projective representations ρk : Γ(Σ) → Aut(PVk), the ρk agree with the ones
arising from TQFT.

This construction extends immediately to the case where the surface and
handlebodies have coloured structure, and we can use the basis for Vk(Σ) of
Theorem 3.32 to obtain an explicit expression for the projective representation
in this case.
Remark 4.1. There is a general procedure to turn projective representations into
honest ones. If ρ : G → PGL(V ) is a projective representation of a group
G on a vector space V with ground field F , there exists a central extension
0 → A → G̃ → G → 0 and a representation σ : G̃ → GL(V ) such that the
following diagram commutes.

0 // A // G̃
π //

σ

��

G //

ρ

��

0

0 // F ∗
diag

// GL(V ) // PGL(V ) // 0.
Rather than considering the projective representations as homomorphisms to

projective linear groups, it is some times more natural to consider them as lifts of
homomorphisms determined on the generators. For example, in the case of the
torus with mapping class group generators ta and tb, the projective ambiguity
turns out to lie completely in the relation (tatb)6 = 1, and one can lift the
projective representation to the central extension B3, once again generated by
ta and tb but now with a single relation tatbta = tbtatb. This generalizes to the
higher genus case to some extent – see [MR95].

4.2 Connection with geometric quantization
We now return to the question of how to use geometric quantization to con-
struct quantum representations of the mapping class group and compare the
resulting representations with those arising from topological quantum field the-
ory. Throughout this section, G = SU(n). One reference for the following is
[And92].

Let Σ be a closed surface with one boundary component, and let

Mσ = (M∗, ω, Iσ)

be the Kähler manifolds with holomorphic line bundles Lkσ → Mσ arising as
in Section 2.5.3, with Kähler structures parametrized by Teichmüller space T .
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Here and in the following, we write Lk = L⊗k. Let Vk → T be the vector bundle
over T with fiber Vk,σ = H0(Mσ,Lkσ). Let σ ∈ T be fixed.

Recall that Diff(Σ) acts on M∗, and that the action of Diff0(Σ) ⊆ Diff(Σ)
is trivial. It follows that the mapping class group Γ(Σ) acts on M∗, and this
action lifts to an action on Lk in the following way: Let L̃ = A×C be the trivial
bundle over A, and define a map Ψ : A×Diff(Σ)→ U(1) by

Ψ(A, f) = exp(2πi(CS(f̃∗A)− CS(Ã)),

extending A and f∗A to connections Ã and f̃∗A in a principal bundle over a
3-manifold with boundary Σ. This map satisfies

Θ(f∗A, g)Ψ(A, f) = Ψ(g∗A, f)Θ(A, g),

where Θ is the map (2.3) used to construct the prequantum line bundle. Fur-
thermore, it can be proved that Ψ(A, f) = 1 for f ∈ Diff0(Σ). Thus the map
LA → Lf∗A mapping (A, z) 7→ (f∗A,Ψ(A, f)z) projects to an action of Γ(Σ) on
the line bundle L →M∗.

In fact, this action determines for a mapping class f ∈ Γ(Σ) a map

f∗ : H0(Mσ,Lkσ)→ H0(Mf∗σ,Lkf∗σ).

Now, choose a path γ in T from f∗σ to σ, and let

Pf∗σ,σ : H0(Mf∗σ,Lkf∗σ)→ H0(Mσ,Lkσ)

denote parallel transport in Vk, determined by the Hitchin connection. Since the
connection is projectively flat, this depends on the path chosen only up to scalar
multiplication. Thus, the composition

ρnk (f) = Pf∗σ,σf
∗ ∈ Aut(PH0(Mσ,Lkσ))

determines a projective representation of Γ(Σ). Using again the projective flat-
ness of the connection, this is seen to depend on σ only up to conjugation. We
could also use the connection to canonically identify all fibers with the space PVk
of covariant constant sections in PVk and in this way obtain projective represen-
tations

ρnk : Γ(Σ)→ Aut(PVk).

In the case where Σ has a single boundary component and d ∈ Zn satisfies
gcd(n, d) = 1 or (n, d) = (2, 0), it is possible to lift the action of Γ(Σ) to the line
bundle over the moduli spaceMd

SU(n) defined in Section 2.5.2, using an argument
similar to that of [Fre95] used to construct the line bundle in the non-closed case.
Therefore, we obtain projective representations

ρn,dk : Γ(Σ)→ Aut(PVk), (4.1)

where Vk is constructed as before. The projective representations arising
from geometric quantization and topological quantum field theory have several
similarities, a few of which are recorded in the next section. One important one
is the fact that the dimensions of the representation spaces agree and are given
by the Verlinde formula:

Theorem 4.2. Let Ṽk(Σg) be the representation spaces obtained by the above
construction for n = 2 for a closed genus g ≥ 2 surface, and let Vk(Σg) denote
the vector spaces constructed from the TQFT. Then

dim Ṽk(Σg) = dimVk(Σg) =
(
k + 2

2

)g−1 k+1∑
j=1

(
sin2 jπ

k + 2

)1−g
,
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In work in progress, Andersen and Ueno ([AU07a], [AU07b], [AU06], [AU])
prove that the two constructions are in a sense completely equivalent for G =
SU(2), when evaluating the skein theory representation at the root of unity

A = −e
2πi

4k+8 . See [And10, Thm. 8] for a precise statement of this result. Noting
this, throughout the rest of this report, we stick to the notation of Section 4.1
and unless otherwise stated, we make no restriction on the primitive root of unity
A when formulating conjectures and results.

4.3 Kernels and images
One of our main goals is to understand the algebraic properties of the quantum
representations and to analyze two conjectures involving their kernels and im-
ages. Note that for a surface Σ, we are interested in the kernel and image of ρk
as a map Γ(Σ)→ Aut(PVk(Σ)). That is, a mapping class f ∈ Γ(Σ) is said to be
in the kernel of ρk, if ρk(f) is a scalar multiple of the identity, and we can make
sense of the order of an element in the usual way.

4.3.1 Dehn twists
It follows from Corollary 1.5 and the following result that none of the ρk are
faithful.

Lemma 4.3. Dehn twists about non-separating curves in a closed oriented sur-
face Σ with empty coloured structure have order 4k + 8 in the projective repre-
sentation ρk, k ≥ 2.

Proof. In the case g = 0 all curves are separating, and there is nothing to prove.
Consider the case g = 1. It is enough to prove the statement for a single

non-separating curve γ0 as for general non-separating curve γ there exists a
homeomorphism ϕ taking γ0 to γ by the change of coordinates principle. Then,
by Lemma 1.7,

ρk(γ) = ρk(ϕ)ρk(γ0)ρk(ϕ)−1,

and the orders of ρk(γ) and ρk(γ0) will coincide, since conjugation and taking
powers commute. Let γ0 be the meridian curve. It follows from Lemma 3.20
and skein theory considerations (or from Roberts’ construction of ρk) that in the
basis e0, . . . , ek of Vk, the action of tγ0 is given by

ρk(tγ0) = diag(µ0, . . . , µk)−1

up to a scalar. Clearly ρk(tγ0)4k+8 is the identity, and we only need to prove
that the order of ρk(tγ0) is not less than 4k + 8. If some power n of this matrix
is a scalar times the identity, then this scalar is 1 since µ0 = 1. Now,

µm = (−1)mAm
2+2m = A(2k+4)m+m2+2m = A(2k+6)m+m2

,

and we are done, if we can prove the following claim: If there exists n such that
4k+ 8 divides ((2k+ 6)m+m2)n for all m = 0, . . . , k, then n ∈ (4k+ 8)Z. Since
k ≥ 2, it suffices to prove that

1 = gcd(4k + 8, (2k + 6)1 + 11, (2k + 6)2 + 22) = gcd(4k + 8, 2k + 7, 4k + 16).

Now if a natural number a divides 4k + 8 and 4k + 16, it divides 8 and is either
1 or even, and no even numbers divide 2k + 7.
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The case g ≥ 2 follows from the g = 1 case by Theorem 3.31, as one can find
a separating curve in the surface, splitting the surface into a disjoint union of a
genus g − 1 surface and a torus. The corresponding TQFT vector space splits
into a number of vector spaces associated to coloured surfaces, and the mapping
class group action respects this splitting. Not it suffices to consider the action
of the meridian curve in the torus with colour 0, which is exactly the one we
considered before.

Remark 4.4. In the case k = 1, the order in Lemma 4.3 is 4, since µ4
1 = A12 = 1.

For surfaces with coloured structure and for separating curves, pretty much
anything goes, as the following examples illustrate.

Let k ≥ 6 and consider the sphere with eight distinguished intervals with
colourings given by (1, 1, 1, 1, 1, 1, 1, 5) as in Figure 4.2. The corresponding graph
in B3 will have only 2 admissible colourings (0, 1, 2, 3, 4) and (2, 3, 4, 5, 6) (reading
from left to right as illustrated on the figure), independent of the level. A
Dehn twist about a curve bounding a disk in B3 meeting only the edge coloured
with 4 or 6 will be represented by the diagonal matrix diag(A24, A48) in the
basis given by the colourings, and at level k, the order of this matrix will be
(4k + 8)/ gcd(4k + 8, 24), which in general is less than 4k + 8. Here, the pair
(4, 6) was simply chosen to ensure a large number of common divisors in the
powers of the entries in the matrix representing the twist.

Figure 4.2: A sphere with 8 coloured intervals and a separating curve.

Figure 4.3: A torus with a single coloured interval.

Another example is given by the torus Σ1 with coloured structure (l, c), where
l consists of a single component. Let G be the graph in the solid torus shown
in Figure 4.3. If k is even, and the component is coloured by k, there is only a
single admissible colouring of G, and the corresponding projective representation
is trivial. In general, when l consists of a single component coloured by an even
number i,

dimVk(Σ1, l, c) = k − i+ 1, (4.2)
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as is easily seen by admissibility constraints on G. Now, if k is odd, and l is
coloured by i = k− 1, we claim that the Dehn twist ta about the meridian curve
shown in the image is represented by a matrix of order 4. In this case, the only
admissible colourings of the non-coloured edge of G are i/2 and i/2 + 1. Now
ta acts diagonally on these as multiplication by µi/2 and µi/2+1 respectively. To
prove that t4a is in the kernel of ρk−1

k , we only have to realize that µ4
i/2 = µ4

i/2+1,
which follows from the following simple calculation:

µ4
i/2µ

−4
i/2+1 = (Ai

2/4+i)4(Ai
2/4+i+1+i+2)−4 = A4i−8i−12

= A−(4i+12) = A−(4k+8) = 1.

Now, the same holds true for any other non-separating curve by the argument
of Lemma 4.3.

This argument appears to be hard to generalize to the higher genus case, as
the number of admissible colourings grows rapidly. It is, however, not specific to
the case where l has one component, and a similar argument works for the torus
containing the coloured structure shown in Figure 4.4; once again, the Dehn
twists pictured all act with order 4.

Figure 4.4: A torus with three intervals coloured (k, k, k − 1).

As the level increases, so does the dimensions of Vk (when g ≥ 1), and in the
light of the Lemma 4.3, one might expect the representations to be increasingly
faithful. The following result was first proven in the geometric case by Andersen
[And06a], later in the skein theoretical setup (in the SU(2) case for all compact
surfaces) by Freedman, Walker, and Wang [FWW02], and more recently by
Marché and Narimannejad [MN08] using other methods. It is stated here in the
geometric formulation.

Theorem 4.5 (Asymptotic faithfulness). Let Σ be a compact surface of genus
g ≥ 2 with one boundary component, and let ρn,dk be the projective representation
of Γ(Σ) from (4.1).

∞⋂
k=1

ker(ρn,dk ) =
{
{1, H} if g = 2, n = 2, d = 0
{1} otherwise ,

where H is hyperelliptic involution.

Sketch of proof. Let Mσ = (Md
SU(n), ω, Iσ). A main point of the proof is that

the only elements of Γ(Σ) which act trivially onM are the elements specified on
the right hand side in the theorem. Parallel transport in Vk induces a parallel
transport in End(Vk) (see [And06a]). Let ϕ ∈ Γ(Σ), denote by ϕ∗ the action
of ϕ on M, and let f ∈ C∞(M) be any smooth function on M. We have the
following commutative diagram.
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H0(Mσ,Lkσ)
ϕ∗

//

Tkf,σ

��

H0(Mϕ∗σ,Lkϕ∗σ)

Tkf◦ϕ∗,ϕ∗σ
��

Pϕ∗σ,σ
// H0(Mσ,Lkσ)

Pϕ∗σ,σT
k
f◦ϕ∗,ϕ∗σ

��

H0(Mσ,Lkσ)
ϕ∗

// H0(Mϕ∗σ,Lkϕ∗σ)
Pϕ∗σ,σ

// H0(Mσ,Lkσ)
Let ϕ ∈ ∩∞k=1 ker(ρn,dk ), and let us see that ϕ acts trivially on M. By con-

struction of ρn,dk , we have that Pϕ∗σ,σ ◦ ϕ∗ is a scalar multiple of the identity,
and by the above diagram, T kf,σ = Pϕ∗σ,σT

k
f◦ϕ∗,ϕ∗σ. Andersen proves that for

any two points σ0, σ1 ∈ T , the Toeplitz operators satisfy

‖Pσ0,σ1T
k
f,σ0
− T kf,σ1

‖ = O(k−1).

It follows from this that

lim
k→∞

‖T kf−f◦ϕ∗,σ‖ = lim
k→∞

‖T kf,σ − T kf◦ϕ∗,σ‖

= lim
k→∞

‖Pϕ∗σ,σT kf◦ϕ∗,ϕ∗σ − T kf◦ϕ∗,σ‖ = 0.

Now, by Lemma 2.12, f − f ◦ ϕ∗ = 0, so ϕ acts trivially onM.

4.3.2 Conjectures and experiments
In light of the previous section, we arrive at the following conjecture.

Conjecture 4.6. Let Σ be a surface, possibly with coloured structure. Then the
kernel of the corresponding quantum representation ρk at level k will be generated
by powers of Dehn twists of all possible curves together with hyper-elliptic invo-
lution in the cases g = 1, 2. For non-separating curves in non-coloured surfaces,
the powers are 4k + 8.

This conjecture is hard to prove or disprove directly, since in general it is
a non-trivial task to determine whether or not a general mapping class can be
written as a word in the specific powers of Dehn twists. We can however see the
following.

Proposition 4.7. For a torus with empty structure, the conjecture fails to hold.

Proof. For a groupG and a natural number n, letGn denote the normal subgroup
of G generated by all n’th powers of elements in G. In [New62], it is shown that
the group PSL(2,Z)/PSL(2,Z)n has infinite order for n = 6 · 72 = 432. Since
the surjective composition

SL(2,Z)→ PSL(2,Z)→ PSL(2,Z)/PSL(2,Z)n

factors over SL(2,Z)n, it follows that SL(2,Z)/ SL(2,Z)n has infinite order.
The normal subgroup 〈tnα〉 generated by n’th powers of all possible Dehn

twists about curves in the torus is obviously contained in the group Γn1 generated
by all n’th powers. Since Γ1 is isomorphic to SL(2,Z), the group Γ1/〈t432

α 〉 has
infinite order. The same will be true for Γ1/〈t432

α , H1〉, where H1 denotes the
mapping class of elliptic involution.

In the torus case, the only curves giving rise to non-trivial Dehn twists are
non-separating. Now, if the above conjecture were true, we would therefore ob-
tain an isomorphism Γ1/〈t4k+8

α , H1〉 → ρk(Γ1). It follows from a theorem by
Gilmer, [Gil99], that the images ρk(Γ1) are finite for all levels, giving a contra-
diction at level k = 106, since 4 · 106 + 8 = 432.
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The finiteness of the image used in the proof above turns out to occur only in
the case of g = 1 and no coloured structure, as follows from the following result
by Masbaum, [Mas99].

Theorem 4.8. For a surface Σ with genus g ≥ 2, the image of ρk is infinite for
k 6= 1, 2, 4, 8.

Sketch of proof. In [Mas99], Masbaum constructs explicitly a mapping class in
the sphere containing four intervals coloured by the number 1 whose image un-
der ρk is infinite in the specified range. By Theorem 3.31, we can view this
mapping class as a mapping class on Σ, still acting with infinite order, proving
the theorem. We recall the construction of the mapping class. The vector space
Vk(S2, l, (1, 1, 1, 1)) is two-dimensional for all levels k ≥ 2 generated by the two
handlebodies with coloured structure shown in Figure 4.5. Let a and b be the
curves in (S2, l, (1, 1, 1, 1)) shown in Figure 4.6, and let w = t−1

a tb. Making a
change of basis, Masbaum finds an explicit representation matrix Mk for the
action of w and proves that, for a particular embedding A 7→ ξ of the ground
ring into C, the matrix has trace |tr(Mk)| > 2 for k 6= 1, 2, 4, 8. Thus, since the
vector spaces Vk were two-dimensional, at least one eigenvalue λk of Mk satisfies
|λk| > 1. Note that since the anomalies in an embedding will be complex roots
of unity, and whereas the eigenvalues will change under scalar multiplication by
these, their absolute values will not, and we conclude that Mk has infinite order.

Figure 4.5: The generators of Vk(S2, l, (1, 1, 1, 1)).

Figure 4.6: The curves a and b.

The same example was carried out with the geometric construction of the
quantum representations in the preprint [LPS10]. Here, the images of the map-
ping class group in Vk(S2, l, (1, 1, 1, 1)) are described explicity and all proven
finite when k = 1, 2, 4, 8. Now, it does not follow, that the images of ρk in
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Vk(Σ, l, c) are finite for general Σ with genus g ≥ 2 in these cases. We examine
the case of k = 8 later.

Norbert A’Campo has written a PARI/GP tool1 to calculate explicitly the
matrices for the actions of certain Dehn twists in a particular handlebody basis
of Vk for low enough levels k. The software uses the fact that to evaluate general
coloured link diagrams, it suffices to be able to evaluate coloured theta graphs
and tetrahedral graphs, whose evaluations are computed in [MV94]. Using this,
we can check some of the cases left out by the results above.

Consider the theory at level k = 5 in the case of the torus containing one
interval coloured by 2. By (4.2), dimV5(Σ1, l, 2) = 4. Letting as always ta and
tb denote the Dehn twists generating the mapping class group, the evaluation
of ρ5(t−1

a tb) at the primitive root of unity A = e
2πi·5
4·5+8 gives a matrix having

an eigenvalue λ of absolute value |λ| > 1. Thus, in this case as well, we can
conclude that the image is infinite. In other words, the finiteness of the image
in the genus g = 1 does not hold when the surface contains coloured structure.

For a surface with genus g ≥ 2 and no coloured structure, the image turns
out to be infinite at level k = 8; one of the cases not covered by Theorem 4.8. In
this case, the TQFT vector space has dimension 165 and concrete calculations
become rather messy. We can however apply the same procedure as before,
using A’Campo’s software: Let ta1 , . . . , ta5 be the twists in Σ2 about the curves
shown in Figure 1.6. Now, the evaluation of ρ8(t−1

a1
ta2t

−1
a3
ta4t

−1
a5

) at the root

of unity A = e
2πi·3
4·8+8 once again gives an eigenvalue of absolute value greater

than 1, and so the image of ρ8 is infinite. Note that in the cases k = 1, 2, 4,
the representations of this mapping class have orders 6, 6, and 36 respectively.
It follows from the coloured splitting theorem that ρ8 has infinite image for all
surfaces of genus g ≥ 2.

In the case of a surface containing a single coloured interval, we can also use
the software to immediately describe the orders of elements as functions of the
level and colouring. Let ρik denote the quantum representation associated to a
genus g = 1 surface containing an interval coloured i. Tables 4.1 and 4.2 describe
the orders of two particular mapping classes. A dash represents an order greater
than 100.

k i 0 2 4 6 8 10 12
2 3 1
3 15 3
4 12 3 1
5 12 – 3
6 12 – 3 1
7 6 18 – 3
8 30 – 30 3 1
9 15 – – – 3
10 12 12 – – 3 1
11 21 – – – – 3
12 24 – – – – 3 1
13 60 – – – – – 3

Table 4.1: The orders of ρik(tat−1
b ).

For example we note again from this that we really do need the assumption
of no coloured structure in the last part of Conjecture 4.6. Namely, we see that

1The software is currently available at http://www.geometrie.ch/TQFT/

http://www.geometrie.ch/TQFT/
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k i 0 2 4 6 8 10 12
2 8 1
3 6 2
4 12 12 1
5 4 – 2
6 16 – 16 1
7 18 – – 2
8 12 – 60 20 1
9 10 – – – 2
10 24 – – – 24 1
11 6 – – – – 2
12 8 – – – – 28 1
13 6 – – – – – 2

Table 4.2: The orders of ρik(t2at−1
b ).

(t2at−1
b )2 ∈ ker ρ2

7, but since the mapping class group in this case is

Γ1,1 ∼= 〈ta, tb | tatbta = tbtatb〉,

we have a well-defined homomorphism l : Γ1,1 → Z mapping ta and tb to 1.
Now, if Conjecture 4.6 were true in this case, we should expect that l(ker ρik) ⊆
gcd(6, 4k + 8)Z, since l((tatb)3) = 6, but l((t2at−1

b )2) = 2 /∈ 6Z.
In view of these considerations, one might also hope for the last part of

Conjecture 4.6 to hold in the coloured case when the image of the relevant
quantum representation is infinite; no contradictions have been found in this
case, neither by hand or by using computer calculations.

4.3.3 Pseudo-Anosov mapping classes
The mapping classes that were candidates for infinite order actions above were
of course not chosen at random. They are exactly the simplest examples of
pseudo-Anosov mapping classes that we obtain from Theorem 1.18. It is natural
to examine exactly how the Nielsen–Thurston classification is reflected by the
quantum representations. By Theorem 4.5 the collection of quantum represen-
tations detects the classification entirely, but one could wish for further criteria
describing more precisely how the trichotomy becomes apparent in the repre-
sentations. In [And08], Andersen describes an exclusion principle method for
picking out pseudo-Anosov mapping classes using quantum representations. In
[AMU06], the authors consider the mapping class group of a sphere with four
coloured intervals and show – by relating the quantum representations to a well-
known representation of the mapping class group – that pseudo-Anosov elements
act with infinite order in the quantum representations at high enough levels, and
that they furthermore determine the stretch factors. It is natural to conjecture
that this happens in general.

Conjecture 4.9 ([AMU06]). Let Σ be a hyperbolic surface and let ϕ be a pseudo-
Anosov mapping class. Then there exists k0 such that ρk(ϕ) has infinite order
for k > k0. Furthermore, the ρk determine the stretch factor of ϕ.

Remark 4.10. For surfaces with coloured structure, the coloured intervals are
viewed as boundary components, so that e.g. a torus with one coloured interval
is considered hyperbolic.

The k0 of the conjecture can become arbitrarily large, as for every k the
element t4k+8

a1
t−4k−8
a2

t4k+8
a3

t−4k−8
a4

t4k+8
a5

in Γ2 is in ker ρk. The orders in Table 4.1



4.4. ASYMPTOTIC EXPANSION AND GROWTH RATE 51

also show that for low levels, we can expect the elements to alternate between
having finite and infinite order.

We return to this conjecture in Section 4.5.2.

4.4 Asymptotic expansion and growth rate
Throughout this section, quantum representations at level k are evaluated at
the primitive root of unity A = −e2πi/(4k+8). More information on the following
conjectures can be found in [And02, Ch. 7.2] – much of it can be formulated for
more general gauge groups, but to stick with our previous discussion, we restrict
attention to G = SU(2). Let M be a compact oriented 3-manifold. Since any
principal bundle over M is trivializable, we refer to the moduli spaceM of flat
bundles on M simply as the moduli space of flat connections on M .

It is known that M has only finitely many connected components. Here,
we assume that π1(M) has n generators and view M as a quotient of a sub-
set of SU(2)×n using Theorem 2.21 with the natural topology. If furthermore
M is closed, the Chern–Simons action is known to be constant on connected
components. In the case G = SU(2), the action is given by

CS(A) = 1
8π2

∫
M

tr(dA ∧A+ 2
3A ∧A ∧A).

We can now formulate the following conjecture, which from a physical point of
view is inspired by so-called stationary phase approximation of the path integral
in the physical definition of Zk from Section 3.1.

Conjecture 4.11 (The asymptotic expansion conjecture). Let M be a closed
oriented 3-manifold. Let r = k + 2. Let {c0 = 0, . . . , cm} be the finitely many
values of the Chern–Simons action on the moduli space of M . Then there exist
dj ∈ Q, bj ∈ C, and aej ∈ C for j = 0, . . . ,m, e = 1, 2, . . . such that

Zk(M) ∼k→∞
m∑
j=0

e2πircjrdj bj(1 +
∞∑
e=1

aejr
−e)

in the sense that

∣∣Zk(M)−
m∑
j=0

e2πircjrdj bj(1 +
E∑
e=1

aejr
−e)
∣∣ = O(rd−E−1),

for E = 0, 1, . . . , where d = maxj dj.

Remark 4.12. If an asymptotic expansion as the above exists, it is well-known
that the constants are more or less uniquely determined – see [And11].

Conjecturally, the constants appearing in this conjecture have various topo-
logical interpretations in terms of e.g. Reidemeister torsion and spectral flow.
We will be particularly interested in the behaviour of the dj .

Recall that for a flat connection A in P →M , we obtain a complex

· · · → Ωk−1(M,AdP ) ∇
A

→ Ωk(M,AdP ) ∇
A

→ Ωk+1(M,AdP )→ · · · .

Let Hi(M,AdP ) denote the cohomology of this complex, and let

hiA = dimHi(M,AdP ).
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Conjecture 4.13 (The growth rate conjecture). Let cj , dj as above, and letMj

denote the subspace of M consisting of connections with Chern–Simons action
cj. Then

dj = 1
2 max

[A]∈Mj

(h1
A − h0

A),

where the max denotes the maximum over all Zariski open subsets of Mj with
the property that h1

A − h0
A is constant on that subset.

Remark 4.14. Consider the case where M is the mapping torus of a homeomor-
phism of a surface of genus g ≥ 1. Let A be a flat connection in P → M , and
let ρ be a representative of [A] in Hom(π1(M),SU(2))/ SU(2). The elements
of su(2) fixed by the action of π1(M) given by Ad ◦ρ are exactly those in the
centralizer of the image ρ(π1(M)), and so by Theorem 2.28,

h0
A = dim Lie(Z(ρ(π1(M)))).

Similarly, Theorem 2.28 gives a description of h1
A using only the corresponding

representation of π1(M).
Combining the conjectures, we can describe the growth rate of Zk(M) as

follows.

Conjecture 4.15. Let d = maxi{di} be the largest of the di of Conjecture 4.13.
Then

|Zk(M)| = O(kd).

Remark 4.16. If in the above conjecture, |Zk(M)| = Θ(kd) for d ≥ 1 (that is,
there exist positive constants c1, c2 such that c1kd ≤ |Zk(M)| ≤ c2k

d for all k),
then the growth rate is determined as

d = lim
k→∞

log|Zk(M))|
log k .

Conversely, if the limit exists and equals d, then |Zk(M)| = Θ(kd).

4.4.1 Mapping tori of torus homeomorphisms
Let Σ be a closed surface, and let Tϕ be the mapping torus for a homeomor-
phism in the mapping class ϕ ∈ Γ(Σ). Then by Theorem 3.30, Zk(Tϕ) = tr ρk(ϕ),
and we can use the framework of quantum representations to study the conjec-
tures above. We consider the case of the mapping tori of homeomorphisms of
a torus and aim at proving the asymptotic expansion conjecture for this fam-
ily of 3-manifolds. It is well-known that every orientable torus bundle over S1

is homeomorphic to such a mapping torus, and thus these are covered by our
analysis.

The calculations have been carried out for the homeomorphisms U ∈ Γ1
satisfying |tr(U)| > 2, for which the result is the following theorem; see [Jef92,
Thm. 4.1].

Theorem 4.17. Let

U =
(
a b
c d

)
∈ Γ1 ∼= SL(2,Z)
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and assume that |tr(U)| > 2. Then there exists a canonical choice of framing for
TU , and the quantum invariant is given by

Zk(TU ) =e2πiψ(U)/(4r) sgn(d+ a∓ 2)
∑
±
± 1

2|c|
√
|d+ a∓ 2|

·
|c|−1∑
β=0

|d+a∓2|∑
γ=1

exp
(

2πir−cγ
2 + (a− d)γβ + bβ2

d+ a∓ 2

)
,

where r = k+2, and ψ(U) ∈ Z depends only on U and is given by [Jef92, (4.4)].

Remark 4.18. Note that it follows from this that up to the framing correction –
i.e. the number e2πiψ(U)/(4r) – the sequence {Zk(TU )}k is periodic (with period
a divisor of (d + a − 2)(d + a + 2)), so in particular it is bounded. Note also
that the mapping classes U ∈ Γ1 with |tr(U)| > 2 are exactly the pseudo-Anosov
ones.

We should also note that Jeffrey as her definition of Zk(TU ) uses certain
representations of SL(2,Z) arising from conformal field theory. These represen-
tations are known to coincide with the ones from geometric quantization, and by
the announced theorem by Andersen and Ueno, they coincide with the combi-
natorial representations as well. In fact, for mapping tori over a torus, this is an
older result, and we will use the notation Zk for all of the possible constructions.

4.4.2 Mapping tori of Dehn twists
Recall that for the torus, all mapping classes corresponding to non-trivial Dehn
twists are conjugate and have trace 2. We consider now the conjectures for
this class of mapping classes. Whereas we can not use Jeffrey’s theorem di-
rectly, a very similar method of proof applies. We will need the following general
quadratic reciprocity theorem.

Theorem 4.19. Let a, b, c be integers, a 6= 0, c 6= 0, and assume that ac + b is
even. Then

|c|−1∑
n=0

eπi(an
2+bn)/c = |c/a|1/2eπi(|ac|−b

2)/(4ac)
|a|−1∑
n=0

e−πi(cn
2+bn)/a.

See Figures 4.7—4.11 for plots of the first 200 values of Zk(Ttmγ ) for powers
m = 1, . . . , 5.

1 2 3 4 5 6 7
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-4

-3

-2

-1

Figure 4.7: The first 200 values of tr(ρk(tγ)).
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Figure 4.8: m = 2.
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Figure 4.9: m = 3.
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Figure 4.10: m = 4.
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Figure 4.11: m = 5.

Theorem 4.20. Let γ be the isotopy class of an essential simple closed curve
in Σ1. Let k > 0 and m ∈ Z, m 6= 0. Then

Zk(Ttmγ ) = e
πim
2r

√ r

2|m|e
− sgn(m)πi/4

|m|−1∑
n=0

e2πirn2/m − e−πirm/2

2 − 1
2

 ,

where r = k + 2.

Proof. By Lemma 1.7, it is enough to prove the Lemma for a single non-separating
curve, so let γ be the isotopy class of the meridian. With the notation r = k+ 2,
the left hand side becomes

Zk(Ttmγ ) = tr(ρk(tmγ )) =
r−2∑
n=0

µ−mn =
r−2∑
n=0

e−
2πi
4r (n2+2n)m

= e
πim
2r

r−2∑
n=0

e−
πi
2r (n+1)2m = e

πim
2r

r−1∑
n=1

e−
πi
2r n

2m.

Conjugating, it thus suffices to show that

r−1∑
n=1

e
πi
2r n

2m =
√

r

2|m|e
sgn(m)πi/4

|m|−1∑
n=0

e−2πirn2/m − eπirm/2

2 − 1
2 .

An application of Theorem 4.19 with a = m, b = 0 and c = 2r shows that

2r−1∑
n=0

e
πi
2r n

2m =

√
2r
|m|

esgn(m)πi/4
|m|−1∑
n=0

e−2πirn2/m,

and it remains to prove that

2
r−1∑
n=1

e
πi
2r n

2m =
2r−1∑
n=0

e
πi
2r n

2m − eπirm/2 − 1

=
2r−1∑
n=1

e
πi
2r n

2m − eπirm/2.
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Subtracting the first r − 1 terms from the sum on the right hand side, we see
that this is equivalent to

r−1∑
n=1

e
πi
2r n

2m =
2r−1∑
n=r

e
πi
2r n

2m − eπirm/2

=
2r−1∑
n=r+1

e
πi
2r n

2m =
r−1∑
n=1

e
πi
2r (n+r)2m.

Finally, this equality is indeed true, since the terms of the sums coincide. More
precisely,

e
πi
2r ((r−1)−(n−1)+r)2m = e

πi
2r n

2m

for n = 0, . . . , r − 1. This on the other hand follows from the observation that

(2r − n)2m = 4r(r − 4n)m+ n2m ≡ n2m (mod 4r).

The aim of the rest of this section is to prove the asymptotic expansion
conjecture and the growth rate conjecture for Ttmγ .

Note that so far, we have more or less silently ignored the framing corrections
in all calculations. It is in fact known, that if a manifold has a given asymp-
totic expansion, the framing corrections only affect the lower order terms of the
expansion. Future work will make precise the dependence on the framing.

Proposition 4.21. Let γ be the isotopy class of an essential simple closed curve
in Σ1, and let m ∈ Z, m 6= 0. The moduli spaceM of flat SU(2)-connections on
Ttmγ looks as follows:

For m odd, it consists of a copy of S2, |m|−1
2 copies of the 2-torus T 2, as well

as a component containing a single point.
For m even, it consists of 2 copies of S2 and |m|2 − 1 copies of T 2.
The only irreducible connection is the one in the single point component for

m odd. On the various components, the Chern–Simons action takes the following
(not necessarily distinct) values:

CS(M) =
{
{ j

2

m | j = 0, . . . , |m|−1
2 } ∪ {1− m

4 } if m is odd,
{ j

2

m | j = 0, . . . , |m|2 } if m is even.

Proof. By Theorem 2.21, we can describe M by describing the representations
of π1(Ttmγ ). It is well-known (see e.g. [Jef92]) that for a mapping torus Tϕ,
ϕ : Σ→ Σ, the fundamental group is given by the twisted product

π1(Tϕ) = Z×̃π1(Σ),

where Z acts on π1(Σ) via ϕ. In our special case, the fundamental group therefore
has the presentation

π1(Ttmγ ) = 〈α, β, δ | αβ = βα, δαδ−1 = α, δβδ−1 = αmβ〉.

Here, we simply note that two essential closed curves are homotopic if and only
if they are isotopic (see e.g. [FM11, Prop. 1.10]), and we have simply let α be
the homotopy class of any curve representing γ and choose β so that i(α, β) = 1.
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The moduli space of flat connections is identified with a quotient of a subset of
SU(2)×3 as

M∼= {(A,B,C) ∈ SU(2)×3 | AB = BA,CAC−1 = A,CBC−1 = AmB}/ ∼,

where ∼ denotes simultaneous conjugation. Since A and B commute for any
[(A,B,C)] ∈ M, they both lie in the same maximal torus in SU(2), and by
conjugating them simultaneously we may assume that they are both diagonal. In
other words, they are both elements of T := U(1) ⊆ SU(2). Here, for a ∈ U(1),
we simply write a for the matrix diag(a, ā) in SU(2). We now consider three
cases.

Case 1. Assume that A,B ∈ Z(SU(2)). In this case, B = AmB, so Am = 1,
and so A must be the identity if m is odd.

Case 2. Assume that A /∈ Z(SU(2)). Then C ∈ N(T ), where N(T ) is the
normalizer of T , which is given by N(T ) = T ∪ L, where

L =
{(

0 e2πit

−e−2πit 0

) ∣∣∣∣ t ∈ R
}
.

If C ∈ T then B = BAm, and Am = 1 is the only restriction. If C ∈ N(T ) \T =
L, conjugation by C corresponds to inversion for elements of T . Thus, for C ∈ L,
we have A−1 = A contradicting that A /∈ Z(SU(2)).

Case 3. Assume that A ∈ Z(SU(2)), B /∈ Z(SU(2)). Again, C ∈ N(T ). If
C ∈ T we find again that Am = 1, so A = 1 if m is odd. If C ∈ L, then
B−1 = BAm, and B2 = A−m = Am, which is impossible for m even when
B /∈ Z(SU(2)), but for m odd, and A = −1, we get a contribution for B = ±i.

In conclusion, when m is odd,

M∼= (({1} × {±1} × SU(2)) ∪ ({e2πij/m | j = 0, . . . , |m| − 1} \ {1} × T × T )
∪ ({1} × T \ {±1} × T ) ∪ ({−1} × {±i} × L))/ ∼,

and when m is even,

M∼= (({±1} × {±1} × SU(2)) ∪ ({ e2πij/m | j = 0, . . . , |m| − 1} \ {±1} × T × T )
∪ ({±1} × T \ {±1} × T ))/ ∼ .

In the case where m odd, the last component is a union of two copies of T
where all points are identified under conjugation since(

0 e2πis

−e−2πis 0

)(
0 e2πit

−e−2πit 0

)(
0 e2πis

−e−2πis 0

)−1

=
(

0 e−2πis+4πit

−e2πis−4πit 0

)
.

This is the single point component ofM. If m is odd or even, for the quotients
of the first and third component in the above description, it suffices to consider
the quotient of {1} × T × T or {±1} × T × T respectively, since we may first
identify any element of SU(2) with its diagonalization. Now T × T is identified
with the torus R2/Z2, and the only conjugation action left is the action by the
Weyl group W ∼= Z2 which acts on R2/Z2 by (t, s) 7→ (−t,−s). The quotient of
R2/Z2 under this action is homeomorphic to S2, of whichM therefore contains
one or two in the cases m odd or even respectively.

Finally, let j ∈ {0, . . . , |m| − 1}, and assume that j/m /∈ {0, 1
2}. Arguing

as above, the only conjugation action left on {e2πij/m} × T × T is that of the
Weyl group. Now, in this case, it acts non-trivially on the first factor, mapping
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e2πij/m to e−2πij/m, and the resulting quotient becomes a number of copies of
T × T as claimed.

Finding the values of the Chern–Simons action is a well-studied problem, and
in our case, the values on the components can be found using [Jef92, Thm. 5.11].

The claim about reducibility follows from the fact that an SU(2)-connection
is reducible if and only if the corresponding representation has image contained
in a maximal torus, which is the case for all representations above but the one
mapping C into L.

Corollary 4.22. The asymptotic expansion conjecture holds for Ttmγ for all pow-
ers m ∈ Z, m 6= 0, and all isotopy classes γ.

Proof. As in the proof of Theorem 4.20, we note that

e2πir((m−1)−(j−1))2/m = e2πirj2/m, (4.3)

for j = 0, . . . , |m| − 1. To prove the corollary, it is now a matter of rearranging
the terms in the formula for Zk(Ttmγ ).

Assume first that m is even. In this case,

e−πirm/2 = eπirm/2 = e2πir(
|m|
2 )2/m,

and it follows from (4.3) that

Zk(Ttmγ ) = e
πim
2r

(√
r

2|m|e
− sgn(m)πi/4

2
|m|/2−1∑
n=1

e2πirn2/m + 1 + eπimr/2


− e−πirm/2

2 − 1
2

)

= e
πim
2r

( |m|/2−1∑
n=1

e2πirn2/m

[√
2r
|m|

e− sgn(m)πi/4

]

+ e2πir·0/m
[√

r

2|m|e
− sgn(m)πi/4 − 1

2

]
+ e2πir(

|m|
2 )2/m

[√
r

2|m|e
− sgn(m)πi/4 − 1

2

])
.

Now, one obtains the full asymptotic expansion of Zk(Ttmγ ) by introducing the
Taylor series for eπim/(2r) and 1/

√
r. For m odd, the exact same argument shows

that

Zk(Ttmγ ) = e
πim
2r

(|m|−1)/2∑
n=1

e2πirn2/m

[√
2r
|m|

e− sgn(m)πi/4

]

+ e2πir0/m
[√

r

2|m|e
− sgn(m)πi/4 − 1

2

]
− e−πirm/2 1

2

)
.

Note that the proof of Corollary 4.22 gives us explicitly the leading order
term of Zk(Ttmγ ), and in particular we are now able to turn to Conjecture 4.13
for Ttmγ .
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Theorem 4.23. LetMj/m, j = 0, . . . ,
⌈ |m|+1

2
⌉
, andM−m/4 be the components

of the moduli space of Ttmγ arising from Proposition 4.21, and let

d′i = 1
2 max

[A]∈Mi

(h1
A − h0

A),

where the max is as in Conjecture 4.13. Then d′j/m = 1
2 and d′−m/4 = 0. In

particular, the growth rate conjecture holds true in this case.

Proof. Abusing notation slightly, we write ρ ∈ M for the (conjugacy class of a)
representation corresponding to a (gauge class of a) flat connection in M. Let
A,B,C denote the images of generators α, β, δ of π1(Ttmγ ) under ρ. Using the
remark following Conjecture 4.13, we find that if ρ ∈Mj/m, then h0

ρ = 1 except
in four or eight points in the cases where m is odd or even respectively, those
points corresponding to A,B,C = ±1. When A,B,C = ±1, we have h0

ρ = 3.
For the representation ρ ∈M−m/4, we have h0

ρ = 0.
We now describe h1

ρ. The cocycles Z1(π1(Ttmγ ), su(2)) embed in su(2)3 under
the map

u 7→ (u(α), u(β), u(δ)).

The image can be determined since cocycles map the three relators

R1 = αβα−1β−1, R2 = αδα−1δ−1, R3 = δβδ−1α−mβ−1

of our presentation of π1(Ttmγ ) to 0 ∈ su(2)3. One finds that Z1(π1(Ttmγ ), su(2))
can be identified with the kernel of the map R = (R̃1, R̃2, R̃3) : su(2)3 → su(2)3

determined by R1, R2, R3 by the requirement that

R̃i(u(α), u(β), u(δ)) = u(Ri).

Assume for simplicity that m > 0. Noting that in general,

u(g−1) = −Ad(ρ(g−1))u(g),

the cocycle condition gives

u(R1) =u(α)−Ad(B)u(α)− u(β) + Ad(A)u(β),
u(R2) =u(α)−Ad(C)u(α)− u(δ) + Ad(A)u(δ),

u(R3) = −Ad(B)(
m∑
n=0

Ad(An))u(α)− u(β)

+ Ad(C)u(β) + u(δ)−Ad(AmB)u(δ).

Here, the first two equalities are immediate, and the last one follows from

u(R3) =u(δ) + Ad(C) + u(βδ−1α−mβ−1)
=u(δ) + Ad(C)(u(β) + Ad(B)u(δ−1α−mβ−1))
=u(δ) + Ad(C)u(β) + Ad(CB)(u(δ−1) + Ad(C−1)u(α−mβ−1))
=u(δ) + Ad(C)u(β)−Ad(CBC−1)u(δ)

+ Ad(CBC−1)(u(α−m) + Ad(A−m)u(β−1))
=u(δ) + Ad(C)u(β)−Ad(AmB)u(δ)
−Ad(CBC−1A−m)u(αm)−Ad(CBC−1A−mB−1)u(β)

=u(δ) + Ad(C)u(β)−Ad(AmB)u(δ)−Ad(B)u(αm)− u(β)
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since, in general

u(gm) =
m−1∑
n=0

Ad(ρ(g)n)u(g).

In other words, R is given by

R(x1, x2, x3) = x1 −Ad(B)x1 − x2 + Ad(A)x2
x1 −Ad(C)x1 − x3 + Ad(A)x3

−Ad(B)(
∑m
n=0 Ad(An))x1 − x2 + Ad(C)x2 + x3 −Ad(AmB)x3

 .

Under this identification, the coboundaries B1(π1(Ttmγ ), su(2)) become

{(x−Ad(A)x, x−Ad(B)x, x−Ad(C)x) | x ∈ su(2)} ⊆ kerR ⊆ su(2)3.

Recall that su(2) has a basis given by{
e1 =

(
0 i
i 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
i 0
0 −i

)}
.

Consider first the case ρ ∈Mj/m. Write

A =
(
e2πij/m 0

0 e−2πij/m

)
, B =

(
e2πis 0

0 e−2πis

)
, C =

(
e2πit 0

0 e−2πit

)
for j ∈ 0, . . . ,

⌈
m+1

2
⌉
, and s, t ∈ [0, 1). A direct computation shows that the

matrix representation of R in the basis given above is

R =

P − S(s) −P + S(j/m) 0
P − S(t) 0 −P + S(j/m)
T (m, s) −P + S(t) P − S(s),

 ,

where P , S, and T are given by

P =

1 0 0
0 1 0
0 0 0

 , S(r) =

cos(4πr) − sin(4πr) 0
sin(4πr) cos(4πr) 0

0 0 0

 ,

T (m, s) =

−η cos(4πs) η sin(4πs) 0
−η sin(4πs) −η cos(4πs) 0

0 0 −m

 ,

η =
m−1∑
n=0

e4πijn/m =
{
m, if j/m ∈ {0, 1

2}
0, otherwise .

One finds that dim(kerR) = 6 when j
m , s, t ∈ {0,

1
2} and that dim(kerR) = 4

otherwise. A similar computation shows that

B1(π1(Ttmγ ), g) ∼= span





1− cos(4πj/m)
− sin(4πj/m)

0
1− cos(4πs)
− sin(4πs)

0
1− cos(4πt)
− sin(4πt)

0


,



sin(4πj/m)
1− cos(4πj/m)

0
sin(4πs)

1− cos(4πs)
0

sin(4πt)
1− cos(4πt)

0


, 0


,
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so the subspace of coboundaries has dimension 0 when j
m , s, t ∈ {0,

1
2} and

dimension 2 otherwise. Notice that by definition of the max of the Theorem,
these finitely many special cases have no influence on d′i.

Now, consider the case of ρ ∈M−m/4, and write

A =
(
−1 0
0 −1

)
, B =

(
i 0
0 −i

)
, C =

(
0 1
−1 0

)
.

In this case, R is given by

R =



2 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
m 0 0 −2 0 0 2 0 0
0 m 0 0 0 0 0 2 0
0 0 −m 0 0 −2 0 0 0


Now dim(kerR) = 3, and here we find that

B1(π1(Ttγ ), g) ∼= span





0
0
0
2
0
0
2
0
0


,



0
0
0
0
2
0
0
0
0


,



0
0
0
0
0
0
0
0
2




,

so all cocycles are coboundaries. It follows that

d′j/m = 1
2 ((4− 2)− 1) = 1

2 ,

d′−m/4 = 1
2 ((3− 3)− 0) = 0.

4.5 Future plans
The considerations made in the previous sections leave a lot of questions unan-
swered, and there are several ways to go from here.

4.5.1 Generalizing asymptotic expansion of mapping tori
Understanding the powers of Dehn twists, we more or less understand all map-
ping tori over a torus. Jeffrey [Jef92] deals with all mapping classes A ∈ Γ1 with
trace |tr(A)| > 2 in a slightly different setup. These are exactly the pseudo-
Anosov mapping classes on the torus. Finite order homeomorphisms can be
handled by the methods of [Jef92] as well, so by the Nielsen–Thurston classifica-
tion, we only need to consider reducible mapping classes. If A is reducible, then
there exists n > 0 such that An(γ) = γ for some (isotopy class of an) essential
simple closed curve on the torus. By the change of coordinates principle, we find
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a ϕ ∈ SL(2,Z) so that ϕAnϕ−1(γm) = γm, where γm is the meridian curve in
the torus. In other words, as we identify γm = e1 ∈ R2,

(ϕAϕ−1)n = ϕAnϕ−1 =
(

1 r
0 1

)
for some r ∈ Z. Since A is not finite order, r 6= 0. Writing

ϕAϕ−1 =
(
a b
c d

)
,

we find that(
a+ cr b+ dr
c d

)
=
(

1 r
0 1

)(
a b
c d

)
=
(
a b
c d

)(
1 r
0 1

)
=
(
a ar + b
c cr + d

)
.

This implies that c = 0, so a, d = 1 or a, d = −1. Therefore there is an s ∈ Z
such that ϕAϕ−1 = tsγm

or ϕAϕ−1 = Htsγm
, where H is hyper-elliptic involution.

Since H is central, we must have either A = tsγ or A = Htsγ . Finally, we recall
that H is in the kernel of all quantum representations, and in particular that
ρk(tsγ) = ρk(Htsγ). To understand the asymptotic expansion conjecture for all
reducible elements, we should simply check it for powers of Dehn twists and
check that the Chern–Simons action takes the same values on Ttsγ and THtsγ .

The moduli spaces of Ttmγ and THtmγ are identified through the map acting
on T × T × N(T ) as the identity on the first two factors and swapping the
components T and L of the third. More precisely the moduli space of THtmγ is
given by

M = (({±1} × {±1} × SU(2)) ∪ (({e2πij/m | j = 0, . . . ,m− 1} \ {±1})× T × L)
∪ ({±1} × T \ {±1} × L))/ ∼

if m is even, and

M = (({1} × {±1} × SU(2)) ∪ (({e2πij/m | j = 0, . . . ,m− 1} \ {1})× T × L)
∪ ({1} × T \ {±1} × L) ∪ ({−1} × {±i} × T ))/ ∼

if m is odd. Using once again [Jef92, Thm. 5.11], one obtains the exact same
Chern–Simons values as in Proposition 4.21.

Besides this natural generalization which with a bit of work leads to a com-
plete description of mapping tori over the torus, we mention a few other possible
directions.

1. It would be obvious to try to carry out the same calculation for mapping
tori over a higher genus surface. Andersen [And11] proves the asymptotic
expansion conjecture for finite order homeomorphisms of surfaces of genus
at least 2, and it would be natural to extend this to the case of Dehn twists.
If γ is the isotopy class of a meridian in Γg, we can use the coloured splitting
theorem to obtain a concrete expression for Zk(Ttγ ). The representation
ρk(tγ) will once again have eigenvalues µ−1

i , this time with multiplicity
given by an analogue of the Verlinde formula for non-closed surfaces.
The manifolds Ttmγ we have been considering are all Seifert fibered spaces,
and it might be possible to work out calculations of Chern–Simons values
and verifying the growth rate conjecture for this large family of spaces. This
of course requires another framework than that of quantum representations
– some work has been carried out in this direction in [Han99].
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2. In understanding Conjecture 4.11, we have focused on the interpretations
of cj and dj . As mentioned, the constants bj conjecturally have similar
topological interpretations in terms of well-known invariants (see [And02]),
which it would be natural to try to understand.

3. Throughout the report, we have specialized to the case G = SU(2). Much
is known about the SU(n) case, and – from the combinatorial viewpoint
– about more general simple Lie groups, and it could be interesting to
examine the behaviour of mapping tori in these cases as well.

4.5.2 Asymptotic expansion and stretch factors
Since the collection of all quantum representations determine the mapping class
group (up to central elements) by Theorem 4.5, if Conjecture 4.11 holds for
the mapping torus Tϕ of a pseudo-Anosov homeomorphism ϕ on a surface Σ, we
might expect to be able to read off the stretch factors directly from the expansion,
thus testing the last part of Conjecture 4.9. In the case of the mapping torus of
a torus, this is particularly easy (but recall that the first part of Conjecture 4.9
can not be true for the torus, since ρk has finite image for all k in this case). Let
as always r = k + 2.

Proposition 4.24. Let ϕ : Σ1 → Σ1 be a pseudo-Anosov mapping class of the
closed torus, given by the SL(2,Z) matrix

ϕ =
(
a b
c d

)
,

and assume that tr(ϕ) > 2. Then the stretch factor λ of ϕ is given by

λ =
(

lim
n→∞

Zn(a2+2ad+d2−6)(Tϕ)
)−2

Proof. In the torus case, the stretch factor λ is nothing but the largest eigen-
value. This is a fundamental fact but can also be seen as a consequence of the
construction of incidence matrices in Section 1.3.1. In other words,

λ =
(a+ d) +

√
(a+ d)2 − 4
2 .

By Theorem 4.17,

Zn(a2+2ad+d2−6)(Tϕ) = Zn((a+d+2)(a+d−2)−2)(Tϕ)

=e2πiψ(U)/(4n(a+d+2)(a+d−2))
∑
±
± 1

2|c|
√
d+ a∓ 2

|c|−1∑
β=0

d+a∓2∑
γ=1

1

=e2πiψ(U)/(4n(a+d+2)(a+d−2))
∑
±
± 1

2
√
d+ a∓ 2

(d+ a∓ 2)

=e2πiψ(U)/(4n(a+d+2)(a+d−2))
(√

d+ a− 2−
√
d+ a+ 2

2

)
→
√
d+ a− 2−

√
d+ a+ 2

2
as n→∞. Thus,(

lim
n→∞

Zn(a2+2ad−6)(Tϕ)
)2

= 1
2

(
a+ d−

√
(a+ d)2 − 4

)
= λ−1.

We will try to generalize this argument to other surfaces.
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4.5.3 Curve operators and Toeplitz operators
Recall that one way of defining quantum representations was by surgery along a
knot L in a cylinder over a surface, the knot being coloured by the special element
Ωp. We might be able to gain an understanding of the quantum representations
by splitting up the Ωp-coloured knot as a linear combination of knots coloured
by the elements ei of K(S1 × I × I). This gives rise to so-called curve operators
which are closely related to geometric quantization of the moduli space.

Consider the BHMV TQFT at level k. Let γ be a simple closed curve in a
surface Σ of genus g ≥ 2. Let i ≤ k be a colour, and view γ as the coloured graph
in Σ× I obtained by embedding γ in Σ× { 1

2}, endowing it with the blackboard
framing with respect to Σ × { 1

2} and colouring it by i. This way we obtain an
operator

Zk(γ, i) ∈ End(Vk(Σ))

called the curve operator. Let πi be an (i+ 1)-dimensional irreducible represen-
tation of SU(2), and let M denote the smooth part of the moduli space of flat
SU(2) connections on Σ. Let hγ,i ∈ C∞(M) be the holonomy function given by

hγ,i([A]) = tr(πi(holA(γ))).

Andersen in [And10] claims the following result (in the general SU(n) setup),
providing a close relation between curve operators and holonomy functions using
Toeplitz operators.

Theorem 4.25. For any curve γ in Σ, and any colouring i,

lim
k→∞

‖Zk(γ, i)− Thγ,i‖ = 0.
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