$\begin{array}{c} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantum representations of mapping class groups with a view towards surface dynamics Uppsala universitet

Søren Fuglede Jørgensen

December 4th, 2013

Introduction and motivation •000	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

Definition

```
The mapping class group of \Sigma is
```

```
MCG(\Sigma) = Homeo^+(\Sigma)/isotopy.
```

Homeomorphisms are assumed to preserve the set of marked points.

- $MCG(\Sigma_{0,0}) = {id}.$
- $MCG(\Sigma_{1,0}) \cong SL(2, \mathbb{Z}).$

Introduction and motivation •000	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

Definition

The mapping class group of $\boldsymbol{\Sigma}$ is

```
MCG(\Sigma) = Homeo^+(\Sigma)/isotopy.
```

Homeomorphisms are assumed to preserve the set of marked points.

- $MCG(\Sigma_{0,0}) = {id}.$
- $MCG(\Sigma_{1,0}) \cong SL(2,\mathbb{Z}).$
- Open question if MCG is always linear; i.e. if faithful linear representations always exist.

Introduction and motivation •000	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

Definition

The mapping class group of $\boldsymbol{\Sigma}$ is

```
MCG(\Sigma) = Homeo^+(\Sigma)/isotopy.
```

Homeomorphisms are assumed to preserve the set of marked points.

- $MCG(\Sigma_{0,0}) = {id}$.
- $MCG(\Sigma_{1,0}) \cong SL(2,\mathbb{Z}).$
- Open question if MCG is always linear; i.e. if faithful linear representations always exist.

Introduction and motivation •000	TQFTs and quantum representations	$\begin{array}{c} \mbox{Quantum representations and dynamics}\\ \mbox{00000} \end{array}$
Notation		

Definition

The mapping class group of $\boldsymbol{\Sigma}$ is

```
MCG(\Sigma) = Homeo^+(\Sigma)/isotopy.
```

Homeomorphisms are assumed to preserve the set of marked points.

- $MCG(\Sigma_{0,0}) = {id}$.
- $MCG(\Sigma_{1,0}) \cong SL(2,\mathbb{Z}).$
- Open question if MCG is always linear; i.e. if faithful linear representations always exist.

Introduction and motivation •000	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

Definition

The mapping class group of $\boldsymbol{\Sigma}$ is

```
MCG(\Sigma) = Homeo^+(\Sigma)/isotopy.
```

Homeomorphisms are assumed to preserve the set of marked points.

- $MCG(\Sigma_{0,0}) = {id}$.
- $MCG(\Sigma_{1,0}) \cong SL(2,\mathbb{Z}).$
- Open question if MCG is always linear; i.e. if faithful linear representations always exist.

Introduction and motivation 0000	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A ≅ Ω¹(M, g) be the space of connections in G × M → M, and let G ≅ C[∞](M, G) be the group of gauge transformations acting on A.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation ○●○○	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A ≅ Ω¹(M, g) be the space of connections in G × M → M, and let G ≅ C[∞](M, G) be the group of gauge transformations acting on A.
- ${\ \bullet \ }$ Define the Chern–Simons functional CS : ${\mathcal A} \to {\mathbb R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation ○●○○	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A ≅ Ω¹(M, g) be the space of connections in G × M → M, and let G ≅ C[∞](M, G) be the group of gauge transformations acting on A.
- \bullet Define the Chern–Simons functional CS $:\mathcal{A}\rightarrow\mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation ○●○○	TQFTs and quantum representations	Quantum representations and dynamics 00000
Notation		

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A ≅ Ω¹(M, g) be the space of connections in G × M → M, and let G ≅ C[∞](M, G) be the group of gauge transformations acting on A.
- \bullet Define the Chern–Simons functional CS $:\mathcal{A}\rightarrow\mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $CS(g^*A) - CS(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$$

TQFTs and quantum representations $_{\rm OOOO}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

The Chern–Simons partition function

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

 Assume that M contains a framed oriented link L, and choose for every component L_i of L a finite dimensional representation R_i of G = SU(N). Set

$$Z_k^{\text{phys}}(M, L, R) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_A(L_i))) e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Witten '89: This extends to a TQFT.

TQFTs and quantum representations $_{\rm OOOO}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Chern–Simons partition function

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

 Assume that *M* contains a framed oriented link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*). Set

$$Z_k^{\text{phys}}(M, L, R) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_A(L_i))) e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Witten '89: This extends to a TQFT.

TQFTs and quantum representations $_{\rm OOOO}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Chern–Simons partition function

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

 Assume that *M* contains a framed oriented link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*). Set

$$Z_k^{\text{phys}}(M, L, R) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_A(L_i))) e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Witten '89: This extends to a TQFT.

TQFTs and quantum representations $_{\rm OOOO}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

A possible construction

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Source of inspiration

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

TQFTs and quantum representations $_{\rm OOOO}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

A possible construction

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Source of inspiration

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

Topological quantum field theory

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

TQFTs and quantum representations ${\scriptstyle \bullet 000}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topological quantum field theory

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

Topological quantum field theory

TQFTs and quantum representations ${\scriptstyle \bullet 000}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Topological quantum field theory

TQFTs and quantum representations ${\scriptstyle \bullet 000}$

 $\begin{array}{l} \mathsf{Quantum\ representations\ and\ dynamics}\\ \mathsf{00000} \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topological quantum field theory

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a homeomorphism and consider the *mapping* cylinder and the *mapping* torus

$$\begin{split} C\varphi &= \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1] \\ T_{\varphi} &= \Sigma \times [0, 1]/((x, 0) \sim (\varphi(x), 1)) \end{split}$$

Then $Z_k(C_{\varphi}) : V_k(\Sigma) \to V_k(\Sigma)$ depends on φ only up to isotopy. Define the (projective) quantum representations $\rho_k : MCG(\Sigma) \to PAut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(C_{\varphi})$. Furthermore, $Z_k(C_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \text{tr } Z_k(C_{\varphi}) = \text{tr } \rho_k([\varphi])$.

Goal

Describe $\rho_k(f)$ for $f \in MCG(\Sigma)$.

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a homeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} \mathcal{C}arphi &= \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ \mathcal{T}_arphi &= \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)). \end{aligned}$$

Then $Z_k(C_{\varphi}) : V_k(\Sigma) \to V_k(\Sigma)$ depends on φ only up to isotopy. Define the (projective) quantum representations $\rho_k : MCG(\Sigma) \to PAut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(C_{\varphi})$. Furthermore, $Z_k(C_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \text{tr } Z_k(C_{\varphi}) = \text{tr } \rho_k([\varphi])$.

Goal

Describe $\rho_k(f)$ for $f \in MCG(\Sigma)$.

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a homeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} \mathcal{C}arphi &= \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ \mathcal{T}_arphi &= \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)) \end{aligned}$$

Then $Z_k(C_{\varphi}) : V_k(\Sigma) \to V_k(\Sigma)$ depends on φ only up to isotopy. Define the (projective) quantum representations $\rho_k : MCG(\Sigma) \to PAut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(C_{\varphi})$. Furthermore, $Z_k(C_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \text{tr } Z_k(C_{\varphi}) = \text{tr } \rho_k([\varphi])$.

Goal

```
Describe \rho_k(f) for f \in \mathsf{MCG}(\Sigma)
```

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a homeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} \mathcal{C}arphi &= \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ \mathcal{T}_arphi &= \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)) \end{aligned}$$

Then $Z_k(C_{\varphi}) : V_k(\Sigma) \to V_k(\Sigma)$ depends on φ only up to isotopy. Define the (projective) quantum representations $\rho_k : MCG(\Sigma) \to PAut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(C_{\varphi})$. Furthermore, $Z_k(C_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \text{tr } Z_k(C_{\varphi}) = \text{tr } \rho_k([\varphi])$.

Goal

Describe $\rho_k(f)$ for $f \in MCG(\Sigma)$.

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of U_q(sl_N), the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (n = 0).

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (n = 0).

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (n = 0).

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (n = 0).

TQFTs and quantum representations

Quantum representations and dynamics ${\scriptstyle \bullet 0000}$

A simple example

Example

Let
$$f = id \in MCG(\Sigma_{g,0})$$
, $G = SU(2)$. Then

$$egin{aligned} Z_k(\mathcal{T}_{\mathsf{id}}) &= Z_k(\Sigma_{g,0} imes S^1) = \mathsf{tr} \,
ho_k(\mathsf{id}) = \mathsf{dim} \, V_k(\Sigma_g) \ &= \left(rac{k+2}{2}
ight)^{g-1} \sum_{j=1}^{k+1} \left(\mathsf{sin}^2 \, rac{j\pi}{k+2}
ight)^{1-g} \in \mathbb{N}. \end{aligned}$$

This is the Verlinde formula. For example,

dim
$$V_k(\Sigma_{0,0}) = 1$$
,
dim $V_k(\Sigma_{1,0}) = k + 1$,
dim $V_k(\Sigma_{2,0}) = \frac{1}{6}(k+1)(k+2)(k+3)$.

TQFTs and quantum representations

Quantum representations and dynamics ${\scriptstyle \bullet 0000}$

A simple example

Example

Let
$$f = id \in MCG(\Sigma_{g,0})$$
, $G = SU(2)$. Then

$$Z_k(T_{\mathsf{id}}) = Z_k(\Sigma_{g,0} imes S^1) = \operatorname{tr}
ho_k(\mathsf{id}) = \dim V_k(\Sigma_g)$$

 $= \left(rac{k+2}{2}
ight)^{g-1} \sum_{j=1}^{k+1} \left(\sin^2 rac{j\pi}{k+2}
ight)^{1-g} \in \mathbb{N}.$

This is the Verlinde formula. For example,

$$\begin{split} &\dim V_k(\Sigma_{0,0}) = 1, \\ &\dim V_k(\Sigma_{1,0}) = k+1, \\ &\dim V_k(\Sigma_{2,0}) = \frac{1}{6}(k+1)(k+2)(k+3). \end{split}$$

TQFTs and quantum representations 0000

Quantum representations and dynamics $_{\odot \odot \odot \odot \odot \odot}$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

```
A mapping class \varphi \in \mathsf{MCG}(\Sigma) is either
```

- finite order,
- infinite order but has a power preserving the homotopy class of an essential simple closed curve, or
- Description (201, pr), (201, pr

Quantum representations and dynamics $_{\odot \odot \odot \odot \odot \odot}$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either
 - finite order,
 - infinite order but has a power preserving the homotopy class of an essential simple closed curve, or
 - pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a homeo. f, [f] = φ, s.t.

 $f(\mathcal{F}^s,\mu^s) = (\mathcal{F}^s,\lambda^{-1}\mu^s), \ f(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda\mu^u).$

Quantum representations and dynamics $_{\odot \odot \odot \odot \odot \odot}$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either
 - finite order,
 - infinite order but has a power preserving the homotopy class of an essential simple closed curve, or
 - pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a homeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^s,\mu^s) = (\mathcal{F}^s,\lambda^{-1}\mu^s), \ f(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda\mu^u).$$

Quantum representations and dynamics $_{\odot \odot \odot \odot \odot \odot}$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either
 - finite order,
 - infinite order but has a power preserving the homotopy class of an essential simple closed curve, or
 - pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a homeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^s,\mu^s) = (\mathcal{F}^s,\lambda^{-1}\mu^s), \ f(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda\mu^u).$$

Quantum representations and dynamics $_{\odot \odot \odot \odot \odot \odot}$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either
 - finite order,
 - infinite order but has a power preserving the homotopy class of an essential simple closed curve, or
 - pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a homeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^s,\mu^s) = (\mathcal{F}^s,\lambda^{-1}\mu^s), \ f(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda\mu^u).$$

Quantum representations and dynamics 00000

The NT classification vs. quantum reps

Are quantum reps sensitive to the trichotomy? Logically, yes, as $\bigcap_{k=1}^{\infty} \ker \rho_k = \{id\}$ (for G = SU(2), n = 0, g > 2, Andersen, Freedman–Walker–Wang).

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma_{g,n})$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do ρ_k determine stretch factors of pseudo-Anosovs?

AMU: These are true for g = 0, n = 4.

The NT classification vs. quantum reps

Are quantum reps sensitive to the trichotomy? Logically, yes, as $\bigcap_{k=1}^{\infty} \ker \rho_k = {id}$ (for G = SU(2), n = 0, g > 2, Andersen, Freedman–Walker–Wang).

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma_{g,n})$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06

Do ρ_k determine stretch factors of pseudo-Anosovs?

AMU: These are true for g = 0, n = 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

The NT classification vs. quantum reps

Are quantum reps sensitive to the trichotomy? Logically, yes, as $\bigcap_{k=1}^{\infty} \ker \rho_k = {id}$ (for G = SU(2), n = 0, g > 2, Andersen, Freedman–Walker–Wang).

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma_{g,n})$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06

Do ρ_k determine stretch factors of pseudo-Anosovs?

AMU: These are true for g = 0, n = 4.

The NT classification vs. quantum reps

Are quantum reps sensitive to the trichotomy? Logically, yes, as $\bigcap_{k=1}^{\infty} \ker \rho_k = {id}$ (for G = SU(2), n = 0, g > 2, Andersen, Freedman–Walker–Wang).

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma_{g,n})$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do ρ_k determine stretch factors of pseudo-Anosovs?

AMU: These are true for g = 0, n = 4.

Quantum representations and dynamics $_{\text{OO} \bullet \text{OO}}$

The NT classification vs. quantum reps

Are quantum reps sensitive to the trichotomy? Logically, yes, as $\bigcap_{k=1}^{\infty} \ker \rho_k = {id}$ (for G = SU(2), n = 0, g > 2, Andersen, Freedman–Walker–Wang).

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma_{g,n})$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do ρ_k determine stretch factors of pseudo-Anosovs?

AMU: These are true for g = 0, n = 4.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

Quantum representations and dynamics $_{\text{OOO} \bullet \text{O}}$

Generalizing AMU

Theorem (Egsgaard, SFJ '13)

The AMU conjecture holds true for homological pseudo-Anosovs $\varphi \in MCG(\Sigma_{0,n})$: those with only even-pronged singularities. Furthermore, stretch factors may be determined as k-limits of eigenvalues of ρ_k for these.

- Cook up representations ρ
 _q, q ∈ C, such that
 ρ_k = ρ
 _{exp(2πi/(k+N))} for large k.
- Lemma: It suffices to show that the spectral radius of ρ̃_q(φ) is greater than 1 for a q ∈ U(1).
- Main result: ρ₋₁ is essentially an exterior power of the lifted action on homology of a double cover of Σ.

Quantum representations and dynamics $_{\text{OOO} \bullet \text{O}}$

Generalizing AMU

Theorem (Egsgaard, SFJ '13)

The AMU conjecture holds true for homological pseudo-Anosovs $\varphi \in MCG(\Sigma_{0,n})$: those with only even-pronged singularities. Furthermore, stretch factors may be determined as k-limits of eigenvalues of ρ_k for these.

- Cook up representations $\tilde{\rho}_q$, $q \in \mathbb{C}$, such that $\rho_k = \tilde{\rho}_{\exp(2\pi i/(k+N))}$ for large k.
- Lemma: It suffices to show that the spectral radius of $\tilde{\rho}_q(\varphi)$ is greater than 1 for a $q \in U(1)$.
- Main result: $\tilde{\rho}_{-1}$ is essentially an exterior power of the lifted action on homology of a double cover of Σ .

Quantum representations and dynamics $_{\text{OOO} \bullet \text{O}}$

Generalizing AMU

Theorem (Egsgaard, SFJ '13)

The AMU conjecture holds true for homological pseudo-Anosovs $\varphi \in MCG(\Sigma_{0,n})$: those with only even-pronged singularities. Furthermore, stretch factors may be determined as k-limits of eigenvalues of ρ_k for these.

- Cook up representations $\tilde{\rho}_q$, $q \in \mathbb{C}$, such that $\rho_k = \tilde{\rho}_{\exp(2\pi i/(k+N))}$ for large k.
- Lemma: It suffices to show that the spectral radius of $\tilde{\rho}_q(\varphi)$ is greater than 1 for a $q \in U(1)$.
- Main result: ρ˜₋₁ is essentially an exterior power of the lifted action on homology of a double cover of Σ.

Quantum representations and dynamics $_{\text{OOO} \bullet \text{O}}$

Generalizing AMU

Theorem (Egsgaard, SFJ '13)

The AMU conjecture holds true for homological pseudo-Anosovs $\varphi \in MCG(\Sigma_{0,n})$: those with only even-pronged singularities. Furthermore, stretch factors may be determined as k-limits of eigenvalues of ρ_k for these.

- Cook up representations $\tilde{\rho}_q$, $q \in \mathbb{C}$, such that $\rho_k = \tilde{\rho}_{\exp(2\pi i/(k+N))}$ for large k.
- Lemma: It suffices to show that the spectral radius of $\tilde{\rho}_q(\varphi)$ is greater than 1 for a $q \in U(1)$.
- Main result: $\tilde{\rho}_{-1}$ is essentially an exterior power of the lifted action on homology of a double cover of Σ .

Introduction	and	

Quantum representations and dynamics $_{\text{OOOO}}\bullet$

Thanks ...

... for listening!

