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Notation

Let Σ = Σg ,n denote a closed oriented surface of genus g with
n marked points.

Definition
The mapping class group of Σ is

MCG(Σ) = Homeo+(Σ)/isotopy.

Homeomorphisms are assumed to preserve the set of marked
points.

Example
MCG(Σ0,0) = {id}.
MCG(Σ1,0) ∼= SL(2,Z).
Open question if MCG is always linear; i.e. if faithful linear
representations always exist.
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Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A ∼= Ω1(M, g) be the space of connections in
G ×M → M, and let G ∼= C∞(M,G) be the group of gauge
transformations acting on A.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z
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The Chern–Simons partition function

Let k ∈ N (called the level) and define the Chern–Simons
partition function

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA ∈ C.

Assume that M contains a framed oriented link L, and choose
for every component Li of L a finite dimensional
representation Ri of G = SU(N). Set

Zphys
k (M, L,R) =

∫
A/G

∏
i
tr(Ri (holA(Li )))e2πik CS(A)DA.

Witten ’89: This extends to a TQFT.
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A possible construction

Theorem (Reshetikhin–Turaev, 1991)
One can construct a topological invariant Zk of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Zphys

k is supposed to do.

Source of inspiration
For a closed oriented 3-manifold M,

Zphys
k (M) = Zk(M).
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Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zk is part of a
2 + 1-dimensional topological quantum field theory (Zk ,Vk):
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Quantum representations
The data (Zk ,Vk) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a homeomorphism and consider the mapping
cylinder and the mapping torus

Cϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Tϕ = Σ× [0, 1]/((x , 0) ∼ (ϕ(x), 1)).

Then Zk(Cϕ) : Vk(Σ)→ Vk(Σ) depends on ϕ only up to isotopy.
Define the (projective) quantum representations
ρk : MCG(Σ)→ PAut(Vk(Σ)) by ρk([ϕ]) = Zk(Cϕ). Furthermore,
Zk(Cϕ) = Vk(ϕ) and Zk(Tϕ) = trZk(Cϕ) = tr ρk([ϕ]).

Goal
Describe ρk(f ) for f ∈ MCG(Σ).
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Constructing quantum representations

Several equivalent approaches to the construction of quantum
representations exist:

Categorical/combinatorial through modular functors: (Vk , ρk)
obtained from representation theory of Uq(slN), the skein
theory of the Kauffman bracket/HOMFLYPT polynomial, ...
Conformal field theory: the monodromy of the WZW
connection in the sheaf of conformal blocks.
Geometric quantization of moduli spaces: the monodromy of
the Hitchin connection (n = 0).
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A simple example

Example
Let f = id ∈ MCG(Σg ,0), G = SU(2). Then

Zk(Tid) = Zk(Σg ,0 × S1) = tr ρk(id) = dimVk(Σg )

=

(k + 2
2

)g−1 k+1∑
j=1

(
sin2 jπ

k + 2

)1−g
∈ N.

This is the Verlinde formula. For example,

dimVk(Σ0,0) = 1,
dimVk(Σ1,0) = k + 1,

dimVk(Σ2,0) =
1
6(k + 1)(k + 2)(k + 3).



Introduction and motivation TQFTs and quantum representations Quantum representations and dynamics

A simple example

Example
Let f = id ∈ MCG(Σg ,0), G = SU(2). Then

Zk(Tid) = Zk(Σg ,0 × S1) = tr ρk(id) = dimVk(Σg )

=

(k + 2
2

)g−1 k+1∑
j=1

(
sin2 jπ

k + 2

)1−g
∈ N.

This is the Verlinde formula. For example,

dimVk(Σ0,0) = 1,
dimVk(Σ1,0) = k + 1,

dimVk(Σ2,0) =
1
6(k + 1)(k + 2)(k + 3).



Introduction and motivation TQFTs and quantum representations Quantum representations and dynamics

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)
A mapping class ϕ ∈ MCG(Σ) is either

finite order,
infinite order but has a power preserving the homotopy class
of an essential simple closed curve, or
pseudo-Anosov: there are transverse measured singular
foliations (F s , µs), (Fu, µu) of Σ, λ > 1 and a homeo. f ,
[f ] = ϕ, s.t.

f (F s , µs) = (F s , λ−1µs), f (Fu, µu) = (Fu, λµu).

Here, λ is called the stretch factor of ϕ.
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The NT classification vs. quantum reps

Are quantum reps sensitive to the trichotomy? Logically, yes, as⋂∞
k=1 ker ρk = {id} (for G = SU(2), n = 0, g > 2, Andersen,

Freedman–Walker–Wang).

Conjecture (Andersen–Masbaum–Ueno ’06)
Let 2g + n > 2, and let ϕ ∈ MCG(Σg ,n) be a pseudo-Anosov.
Then there exists k0 s.t. ρk(ϕ) has infinite order for k > k0.

Question (Andersen–Masbaum–Ueno ’06)
Do ρk determine stretch factors of pseudo-Anosovs?

AMU: These are true for g = 0, n = 4.
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Generalizing AMU

Theorem (Egsgaard, SFJ ’13)
The AMU conjecture holds true for homological pseudo-Anosovs
ϕ ∈ MCG(Σ0,n): those with only even-pronged singularities.
Furthermore, stretch factors may be determined as k-limits of
eigenvalues of ρk for these.

Steps in proof.
Cook up representations ρ̃q, q ∈ C, such that
ρk = ρ̃exp(2πi/(k+N)) for large k.
Lemma: It suffices to show that the spectral radius of ρ̃q(ϕ) is
greater than 1 for a q ∈ U(1).
Main result: ρ̃−1 is essentially an exterior power of the lifted
action on homology of a double cover of Σ.
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Thanks ...

... for listening!
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