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Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A ∼= Ω1(M, g) be the space of connections in
G ×M → M, and let G ∼= C∞(M,G) be the group of gauge
transformations acting on A.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z
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The Chern–Simons partition function

Let k ∈ N (called the level) and define the Chern–Simons
partition function

Zphys
k (M) =

∫
AP/GP

exp(2πik CS([A]))DA ∈ C.

Witten ’89: This defines a topological invariant.
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Topological quantum field theory

Theorem (Reshetikhin–Turaev, 1991)
One can construct a topological invariant Zk of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Zphys

k is supposed to do.

Goal
Understand large k asymptotics of Zk(M) in the case where M is a
mapping torus.
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Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zk is part of a
2 + 1-dimensional topological quantum field theory (Zk ,Vk):
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Quantum representations
The data (Zk ,Vk) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a diffeomorphism and consider the mapping
cylinder and the mapping torus

Mϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Tϕ = Σ× [0, 1]/((x , 0) ∼ (ϕ(x), 1)).

Then Zk(Mϕ) : Vk(Σ)→ Vk(Σ) depend on ϕ only up to isotopy.
Define the (projective) quantum representations
ρk : MCG(Σ)→ PAut(Vk(Σ)) by ρk([ϕ]) = Zk(Mϕ). Furthermore,
Zk(Mϕ) = Vk(ϕ) and Zk(Tϕ) = trZk(Mϕ) = tr ρk([ϕ]).

Revised goal
Describe ρk(f ) for f ∈ MCG(Σ).
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Constructing quantum representations

Several equivalent approaches to quantum representations exist:
Categorical/combinatorial through modular functors: (Vk , ρk)
obtained from representation theory of Uq(slN), the skein
theory of the Kauffman bracket/HOMFLYPT polynomial, ...
Geometric quantization (g ≥ 2): L →Md is the pre-quantum
line bundle over the moduli space of flat SU(N)-connections

Md = Homd (π̃1(Σ),SU(N))/ SU(N),

Vk = H0(Md
σ,Lk

σ), σ ∈ Teich(Σ). Then ρk is defined by the
parallel transport of Hitchin connection in
H0(Md ,Lk)→ Teich(Σ).
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A Dehn twist

Figure: The Dehn twist tγ about a curve γ.
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The Dehn–Lickorish theorem

Theorem (Dehn–Lickorish)
The mapping class group MCG(Σ) is generated by a certain finite
set of Dehn twists about curves in Σ.

Figure: The Dehn–Lickorish generators in a genus 3 surface.
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An algorithm

Quantum reps of Dehn–Lickorish generators implemented in
PARI/GP by A’Campo–Masbaum.
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An algorithm

Quantum reps of Dehn–Lickorish generators implemented in
PARI/GP by A’Campo–Masbaum.

Theorem (Masbaum)
For g ≥ 2, k 6= 1, 2, 4, 8, there exists ϕ ∈ MCG(Σg ) s.t. ρk(ϕ) has
infinite order.
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Quantum reps of Dehn–Lickorish generators implemented in
PARI/GP by A’Campo–Masbaum.

Theorem (Masbaum)
For g ≥ 2, k 6= 1, 2, 4, �A8, there exists ϕ ∈ MCG(Σg ) s.t. ρk(ϕ) has
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An algorithm

Quantum reps of Dehn–Lickorish generators implemented in
PARI/GP by A’Campo–Masbaum.

Theorem (Masbaum)
For g ≥ 2, k 6= 1, 2, 4, �A8, there exists ϕ ∈ MCG(Σg ) s.t. ρk(ϕ) has
infinite order.

“Proof” for k = 8.
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Asymptotic expansion conjecture

Recall that the partition function looked like

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA.

LetM be the moduli space of flat connections on a 3-manifold M,
and let 0 = c0, c1, . . . , cn be the values of CS onM.

Conjecture (The asymptotic expansion conjecture)
There exist dj ∈ 1

2Z, bj ∈ C, al
j ∈ C for j = 0, . . . , n, l ∈ N0 such

that Zk(M) has the asymptotic expansion

Zk(M) ∼k→∞

n∑
j=0

e2πircj rdjbj

(
1 +

∞∑
l=1

al
j r−l/2

)
,

where r = k + N.
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The AEC for Dehn twist bundles

Let γ in S1 × S1 be non-trivial, and let tγ be the Dehn twist about
γ.

Theorem (Cor. 5.20 and Cor. 5.30)
The AEC holds for the mapping tori Ttb

γ
, b 6= 0, when G = SU(2)

or G = SU(3).

Sketch of proof
Explicit calculation (Cor. 5.18 and Thm. 5.24) of Zk(Ttb

γ
):

Vk(S1 × S1) has natural basis vectors vλ labelled by

P̃k = {λ ∈ int(P+) ∩ Λw | 〈λ, αm〉 < r}.

Here: Λw is the weight lattice, P+ is the positive Weyl alcove,
αm maximal root.
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The AEC for Dehn twist bundles

Sketch of proof (cont.)
Basis is set up (Lem. 4.4) such that ρk(tb

γ ) is diagonal w.r.t.
{vλ} with eigenvalues of the form

g(λ) = exp
(
bπir 〈λ, λ〉

)
.

Jeffrey’s quadratic reciprocity gives formula for∑
λ∈Λw/2rNΛw g(λ).

Evaluating
∑
λ∈P̃k

g(λ) is combinatorics (N = 2, 3).
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The AEC for Dehn twist bundles

Sketch of proof (cont.)
On the other hand, ρ ∈M may be considered as
ρ = [(A1,A2,A3)] ∈ T × T × SU(N)/ ∼, T maximal torus.
Take a1, a2 s.t. exp(2πiaj) = Aj . There is a Weyl group
element w ∈W s.t.

wtb
γ (a1, a2)− (a1, a2) =: (λ, µ) ∈ ΛR ⊕ ΛR

Then (Jeffrey)

e2πi CS(ρ) = ε(λ, µ)eiω((a1,a2),(λ,µ))/2,

where ε(λ1, λ2) ∈ {±1} is a theta-characteristic.
Now, match everything up (Prop. 5.28, Cor. 5.30).
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Generalizing the result

Assumption N = 2, 3 only used to simplify combinatorics.
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Generalizing the result

Assumption N = 2, 3 only used to simplify combinatorics.
Evaluating Zk(Ttb

γ
), G = SU(2), for g = 1 boils down to

r−1∑
n=1

exp
(
πi
2r bn

2
)
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Generalizing the result

Assumption N = 2, 3 only used to simplify combinatorics.
Evaluating Zk(Ttb

γ
), G = SU(2), for g ≥ 2 boils down to

r−1∑
n=1

p(n) exp
(
πi
2r bn

2
)
,

where p is a polynomial (Section 5.5).



Introduction and motivation TQFTs and quantum representations Results and conjectures

The Nielsen–Thurston classification

Recall the notion of a pseudo-Anosov mapping class:

Theorem (Nielsen–Thurston)
A mapping class ϕ ∈ MCG(Σg ) is either

finite order
infinite order but has a power preserving an essential simple
closed curve.
pseudo-Anosov: there are transverse measured singular
foliations (F s , µs), (Fu, µu), λ > 1 and a homeo. f , [f ] = ϕ,
s.t.

f (F s , µs) = (F s , λ−1µs), f (Fu, µu) = (Fu, λµu).

Here, λ is called the stretch factor of ϕ.
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Asymptotics via geometric quantization
ConsiderM =Md . Let K (k)

σ denote the Bergman kernel of the
orthogonal projection πk

σ : C∞(M,Lk)→ H0(Mσ,Lk
σ), i.e.

πk
σs(x) =

∫
M

K (k)
σ (x , y)s(y)

ωn(y)

n!(2π)n ,

for s ∈ C∞(M,Lk). Suppose ϕ ∈ MCG(Σg ) with

graph(ϕ∗) t diag ⊆M×M.

Theorem (Karabegov–Schlichenmaier)
For y close to x ∈ |M|ϕ,

k−nK (k)
σ (x , y) ∼ ekχ(x ,y)b(x , y)

for functions χ, b defined close to (x , x), b(x , x) = 1,
n = 1

2 dimM.
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Asymptotics via geometric quantization

Theorem (Andersen, Thm. 6.7)
Let γ be a curve in Teich(Σg ) from σ0 to σ1. Then there exists
gγ ∈ C∞(M) s.t.∥∥∥PT∇Hitchin(γ)− πk

σ1gγπ
k
σ0

∥∥∥ = O(1/k).

Let Lx = Hessx (y 7→ χ(y , ϕ(y))).

Theorem (Thm. 6.8)
We have

tr(ρk(ϕ)) ∼
∑

x∈Fix(ϕ:M→M)

tr(ϕ : Lk
x → Lk

x )gγ(x) exp(isign(Lx/4))√
|det Lx |

.
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The AMU conjecture

Conjecture (AMU conjecture)
Let Σg ,n be a genus g surface with n coloured points, 2g + n > 2,
and let ϕ be a pseudo-Anosov. Then there exists k0 s.t. ρk(ϕ) has
infinite order for k > k0. Moreover, the ρk determine the stretch
factor of ϕ.

Theorem (Thm. 6.32)
Let G = SU(2). The conjecture is true for orientable
pseudo-Anosovs ϕ of the six punctured sphere.

Proof
As in AMU: Tweak quantum reps to define reps of MCG(Σ6

0) for
which the statement holds.
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The AMU conjecture

Proof (cont.)

Let ρ(S)
A denote the generic action – induced by the action of

B6 on TL6 – on the 5-dimensional space V of Kauffman
skeins in B3 meeting S2 in six points.
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The AMU conjecture

Proof (cont.)

The representation ρA = A3/5ρ
(S)
A descends to a

representation of MCG(Σ6
0) = B6/ ∼.

On the other hand, with A = q−1/4, σi 7→ −A−1ρ
(S)
A (σi ) is

equivalent to Jones’ Hecke algebra representation ρ̃q

associated to (see Wang).
Kasahara: ρ̃−1 is equivalent to the induced action on
∧2H1(Σ2,Z)/ωZ⊗ sgn via Birman–Hilden.
Specialize to A = Ak with A2

k → −i as in AMU.
For the pseudo-Anosovs of the claim, the stretch factor is the
spectral radius of this homology action.
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