Semi-classical properties of the quantum representations of mapping class groups PhD defence

Søren Fuglede Jørgensen Supervisor: Jørgen Ellegaard Andersen

Aarhus University

August 29th 2013

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $A \cong \Omega^1(M, \mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $G \cong C^{\infty}(M, G)$ be the group of gauge transformations acting on A.
- ullet Define the Chern–Simons functional CS : $\mathcal{A}
 ightarrow \mathbb{R}$ by

$$CS(A) = \frac{1}{8\pi^2} \int_M tr(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $CS(g^*A) - CS(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(M,\mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $\mathcal{G} \cong C^\infty(M,G)$ be the group of gauge transformations acting on \mathcal{A} .
- ullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$CS(A) = \frac{1}{8\pi^2} \int_M tr(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $\mathsf{CS}(g^*A) - \mathsf{CS}(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(M,\mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $\mathcal{G} \cong C^\infty(M,G)$ be the group of gauge transformations acting on \mathcal{A} .
- ullet Define the Chern–Simons functional CS : $\mathcal{A}
 ightarrow \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr} (A \wedge dA + rac{2}{3} A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $\mathsf{CS}(g^*A) - \mathsf{CS}(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(M,\mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $\mathcal{G} \cong C^\infty(M,G)$ be the group of gauge transformations acting on \mathcal{A} .
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = \frac{1}{8\pi^2} \int_{M} \mathsf{tr}(A \wedge dA + \frac{2}{3} A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $\mathsf{CS}(g^*A) - \mathsf{CS}(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

The Chern–Simons partition function

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}_P/\mathcal{G}_P} \exp(2\pi i k \operatorname{\mathsf{CS}}([A])) \, \mathcal{D}A \in \mathbb{C}.$$

Witten '89: This defines a topological invariant

The Chern–Simons partition function

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}_P/\mathcal{G}_P} \exp(2\pi i k \operatorname{\mathsf{CS}}([A])) \, \mathcal{D}A \in \mathbb{C}.$$

Witten '89: This defines a topological invariant.

Theorem (Reshetikhin-Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way $Z_k^{\rm phys}$ is supposed to do.

Goal

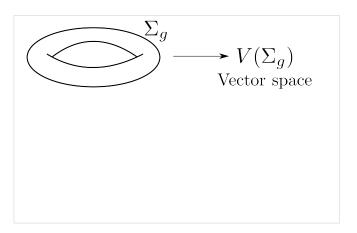
Understand large k asymptotics of $Z_k(M)$ in the case where M is a mapping torus.

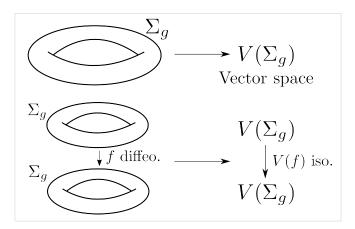
Theorem (Reshetikhin-Turaev, 1991)

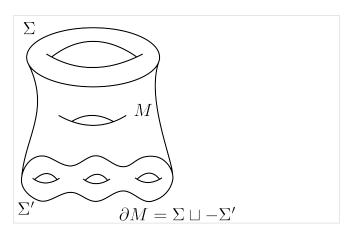
One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way $Z_k^{\rm phys}$ is supposed to do.

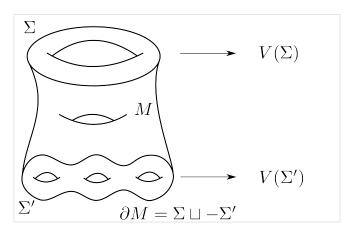
Goal

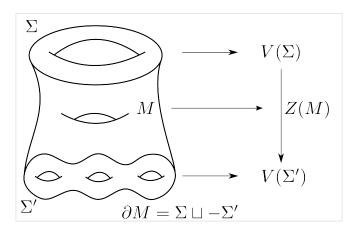
Understand large k asymptotics of $Z_k(M)$ in the case where M is a mapping torus.











The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$M_{\varphi} = \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1]$$

$$T_{\varphi} = \Sigma \times [0, 1]/((x, 0) \sim (\varphi(x), 1)).$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the (projective) quantum representations $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{PAut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \operatorname{tr} Z_k(M_{\varphi}) = \operatorname{tr} \rho_k([\varphi])$.

Revised goal

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$egin{aligned} M_{arphi} &= \Sigma imes [0,rac{1}{2}] \cup_{arphi} \Sigma imes [rac{1}{2},1] \ T_{arphi} &= \Sigma imes [0,1]/((x,0) \sim (arphi(x),1)). \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the (projective) quantum representations $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{PAut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \operatorname{tr} Z_k(M_{\varphi}) = \operatorname{tr} \rho_k([\varphi])$.

Revised goal

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$egin{aligned} M_{arphi} &= \Sigma imes [0,rac{1}{2}] \cup_{arphi} \Sigma imes [rac{1}{2},1] \ T_{arphi} &= \Sigma imes [0,1]/((x,0) \sim (arphi(x),1)). \end{aligned}$$

Then $Z_k(M_\varphi): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the (projective) quantum representations $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{PAut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_\varphi)$. Furthermore, $Z_k(M_\varphi) = V_k(\varphi)$ and $Z_k(T_\varphi) = \mathsf{tr}\, Z_k(M_\varphi) = \mathsf{tr}\, \rho_k([\varphi])$.

Revised goa

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$egin{aligned} M_{arphi} &= \Sigma imes [0,rac{1}{2}] \cup_{arphi} \Sigma imes [rac{1}{2},1] \ \mathcal{T}_{arphi} &= \Sigma imes [0,1]/((x,0) \sim (arphi(x),1)). \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the (projective) quantum representations $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{PAut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \operatorname{tr} Z_k(M_{\varphi}) = \operatorname{tr} \rho_k([\varphi])$.

Revised goal

Constructing quantum representations

Several equivalent approaches to quantum representations exist:

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Geometric quantization ($g \ge 2$): $\mathcal{L} \to \mathcal{M}^a$ is the pre-quantum line bundle over the moduli space of flat SU(N)-connections

$$\mathcal{M}^{\sigma} = \mathsf{Hom}_{d}(ilde{\pi}_{1}(\Sigma), \mathsf{SU}(N)) / \mathsf{SU}(N)$$

 $V_k = H^0(\mathcal{M}_{\sigma}^d, \mathcal{L}_{\sigma}^k), \ \sigma \in \mathrm{Teich}(\Sigma)$. Then ρ_k is defined by the parallel transport of Hitchin connection in $H^0(\mathcal{M}^d, \mathcal{L}^k) \to \mathrm{Teich}(\Sigma)$.

Constructing quantum representations

Several equivalent approaches to quantum representations exist:

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Geometric quantization $(g \ge 2)$: $\mathcal{L} \to \mathcal{M}^d$ is the pre-quantum line bundle over the moduli space of flat SU(N)-connections

$$\mathcal{M}^d = \operatorname{\mathsf{Hom}}_d(\tilde{\pi}_1(\Sigma), \operatorname{\mathsf{SU}}(N)) / \operatorname{\mathsf{SU}}(N)$$

 $V_k = H^0(\mathcal{M}^d_{\sigma}, \mathcal{L}^k_{\sigma}), \ \sigma \in \mathrm{Teich}(\Sigma).$ Then ρ_k is defined by the parallel transport of Hitchin connection in $H^0(\mathcal{M}^d, \mathcal{L}^k) \to \mathrm{Teich}(\Sigma).$

Constructing quantum representations

Several equivalent approaches to quantum representations exist:

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Geometric quantization $(g \ge 2)$: $\mathcal{L} \to \mathcal{M}^d$ is the pre-quantum line bundle over the moduli space of flat SU(N)-connections

$$\mathcal{M}^d = \operatorname{\mathsf{Hom}}_d(\tilde{\pi}_1(\Sigma), \operatorname{\mathsf{SU}}(N)) / \operatorname{\mathsf{SU}}(N),$$

 $V_k = H^0(\mathcal{M}^d_\sigma, \mathcal{L}^k_\sigma)$, $\sigma \in \mathrm{Teich}(\Sigma)$. Then ρ_k is defined by the parallel transport of Hitchin connection in $H^0(\mathcal{M}^d, \mathcal{L}^k) \to \mathrm{Teich}(\Sigma)$.

A Dehn twist

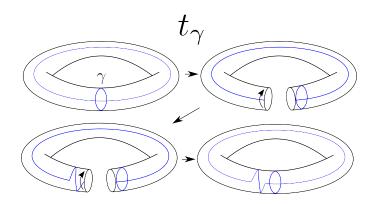


Figure: The Dehn twist t_{γ} about a curve γ .

The Dehn-Lickorish theorem

Theorem (Dehn-Lickorish)

The mapping class group $MCG(\Sigma)$ is generated by a certain finite set of Dehn twists about curves in Σ .

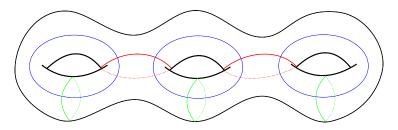


Figure: The Dehn-Lickorish generators in a genus 3 surface.

Quantum reps of Dehn–Lickorish generators implemented in PARI/GP by A'Campo–Masbaum.

Quantum reps of Dehn–Lickorish generators implemented in PARI/GP by A'Campo–Masbaum.

Theorem (Masbaum)

For $g \ge 2$, $k \ne 1, 2, 4, 8$, there exists $\varphi \in MCG(\Sigma_g)$ s.t. $\rho_k(\varphi)$ has infinite order.

Quantum reps of Dehn–Lickorish generators implemented in PARI/GP by A'Campo–Masbaum.

Theorem (Masbaum)

For $g \ge 2$, $k \ne 1, 2, 4, \%$, there exists $\varphi \in \mathsf{MCG}(\Sigma_g)$ s.t. $\rho_k(\varphi)$ has infinite order.

Quantum reps of Dehn–Lickorish generators implemented in PARI/GP by A'Campo–Masbaum.

Theorem (Masbaum)

For $g \ge 2$, $k \ne 1, 2, 4, \%$, there exists $\varphi \in \mathsf{MCG}(\Sigma_g)$ s.t. $\rho_k(\varphi)$ has infinite order.

```
"Proof" for k = 8.
```

```
? init_su(8); init_boom([0],2); abs(subst(trace(lift(twA(1)^2*twB(1)^(-2))),A,exp(2*Pi*I*3/(4*8+8)))
su,    KLEVEL= 8, POL= A^16 - A^12 + A^8 - A^4 + 1
$15 = 9.215864547265350243212342910
```

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j^l \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i r c_j} r^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l r^{-l/2} \right),$$

where r = k + N.

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j^l \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i r c_j} r^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l r^{-l/2} \right),$$

where r = k + N.

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j^l \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k\to\infty} \sum_{j=0}^n e^{2\pi i r c_j} r^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l r^{-l/2}\right),$$

where r = k + N.

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ .

Theorem (Cor. 5.20 and Cor. 5.30)

The AEC holds for the mapping tori $T_{t_{\gamma}^b}$, $b \neq 0$, when G = SU(2) or G = SU(3).

Sketch of proof

Explicit calculation (Cor. 5.18 and Thm. 5.24) of $Z_k(T_{t_{\gamma}^b})$:

ullet $V_k(S^1 imes S^1)$ has natural basis vectors v_λ labelled by

$$\tilde{P}_k = \{\lambda \in \text{int}(P_+) \cap \Lambda^w \mid \langle \lambda, \alpha_m \rangle < r \}$$

Here: Λ^w is the weight lattice, P_+ is the positive Weyl alcove, α_m maximal root.

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ .

Theorem (Cor. 5.20 and Cor. 5.30)

The AEC holds for the mapping tori $T_{t^b_{\gamma}}$, $b \neq 0$, when G = SU(2) or G = SU(3).

Sketch of proof

Explicit calculation (Cor. 5.18 and Thm. 5.24) of $Z_k(T_{t_v^b})$:

ullet $V_k(S^1 imes S^1)$ has natural basis vectors v_λ labelled by

$$\tilde{P}_k = \{\lambda \in \operatorname{int}(P_+) \cap \Lambda^w \mid \langle \lambda, \alpha_m \rangle < r \}.$$

Here: Λ^w is the weight lattice, P_+ is the positive Weyl alcove, α_m maximal root.

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ .

Theorem (Cor. 5.20 and Cor. 5.30)

The AEC holds for the mapping tori $T_{t_{\gamma}^b}$, $b \neq 0$, when G = SU(2) or G = SU(3).

Sketch of proof

Explicit calculation (Cor. 5.18 and Thm. 5.24) of $Z_k(T_{t_{\gamma}^b})$:

ullet $V_k(S^1 imes S^1)$ has natural basis vectors v_λ labelled by

$$\tilde{P}_k = \{ \lambda \in \operatorname{int}(P_+) \cap \Lambda^w \mid \langle \lambda, \alpha_m \rangle < r \}.$$

Here: Λ^w is the weight lattice, P_+ is the positive Weyl alcove α_m maximal root.

Let γ in $S^1 \times S^1$ be non-trivial, and let t_γ be the Dehn twist about γ .

Theorem (Cor. 5.20 and Cor. 5.30)

The AEC holds for the mapping tori $T_{t_{\gamma}^b}$, $b \neq 0$, when G = SU(2) or G = SU(3).

Sketch of proof

Explicit calculation (Cor. 5.18 and Thm. 5.24) of $Z_k(T_{t_{\gamma}^b})$:

ullet $V_k(S^1 imes S^1)$ has natural basis vectors v_λ labelled by

$$\tilde{P}_k = \{\lambda \in \operatorname{int}(P_+) \cap \Lambda^w \mid \langle \lambda, \alpha_m \rangle < r\}.$$

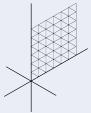
Here: Λ^w is the weight lattice, P_+ is the positive Weyl alcove, α_m maximal root.

Sketch of proof (cont.)

• Basis is set up (Lem. 4.4) such that $\rho_k(t_{\gamma}^b)$ is diagonal w.r.t. $\{v_{\lambda}\}$ with eigenvalues of the form

$$g(\lambda) = \exp\left(b\frac{\pi i}{r}\langle\lambda,\lambda\rangle\right).$$

- Jeffrey's quadratic reciprocity gives formula for $\sum_{\lambda \in \Lambda^w/2rN\Lambda^w} g(\lambda)$.
- Evaluating $\sum_{\lambda \in \tilde{P}_{L}} g(\lambda)$ is combinatorics (N = 2, 3).

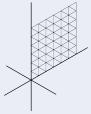


Sketch of proof (cont.)

• Basis is set up (Lem. 4.4) such that $\rho_k(t_{\gamma}^b)$ is diagonal w.r.t. $\{v_{\lambda}\}$ with eigenvalues of the form

$$g(\lambda) = \exp\left(b\frac{\pi i}{r}\langle\lambda,\lambda\rangle\right).$$

- Jeffrey's quadratic reciprocity gives formula for $\sum_{\lambda \in \Lambda^w/2rN\Lambda^w} g(\lambda)$.
- Evaluating $\sum_{\lambda \in \tilde{P}_k} g(\lambda)$ is combinatorics (N=2,3).

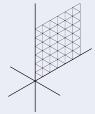


Sketch of proof (cont.)

• Basis is set up (Lem. 4.4) such that $\rho_k(t_{\gamma}^b)$ is diagonal w.r.t. $\{v_{\lambda}\}$ with eigenvalues of the form

$$g(\lambda) = \exp\left(b\frac{\pi i}{r}\langle\lambda,\lambda\rangle\right).$$

- Jeffrey's quadratic reciprocity gives formula for $\sum_{\lambda \in \Lambda^w/2rN\Lambda^w} g(\lambda)$.
- Evaluating $\sum_{\lambda \in \tilde{P}_k} g(\lambda)$ is combinatorics (N=2,3).



Sketch of proof (cont.)

- On the other hand, $\rho \in \mathcal{M}$ may be considered as $\rho = [(A_1, A_2, A_3)] \in T \times T \times \mathsf{SU}(N) / \sim$, T maximal torus.
- Take a_1, a_2 s.t. $\exp(2\pi i a_j) = A_j$. There is a Weyl group element $w \in W$ s.t.

$$\mathsf{wt}^b_\gamma(\mathsf{a}_1,\mathsf{a}_2) - (\mathsf{a}_1,\mathsf{a}_2) =: (\lambda,\mu) \in \mathsf{\Lambda}^\mathsf{R} \oplus \mathsf{\Lambda}^\mathsf{R}$$

Then (Jeffrey)

$$e^{2\pi i \operatorname{CS}(\rho)} = \varepsilon(\lambda, \mu) e^{i\omega((a_1, a_2), (\lambda, \mu))/2}$$

where $\varepsilon(\lambda_1, \lambda_2) \in \{\pm 1\}$ is a theta-characteristic.

Now, match everything up (Prop. 5.28, Cor. 5.30)

Sketch of proof (cont.)

- On the other hand, $\rho \in \mathcal{M}$ may be considered as $\rho = [(A_1, A_2, A_3)] \in \mathcal{T} \times \mathcal{T} \times \mathsf{SU}(\mathcal{N})/\sim$, \mathcal{T} maximal torus.
- Take a_1, a_2 s.t. $\exp(2\pi i a_j) = A_j$. There is a Weyl group element $w \in W$ s.t.

$$\operatorname{\mathsf{wt}}^{\mathit{b}}_{\gamma}(\mathsf{a}_1,\mathsf{a}_2) - (\mathsf{a}_1,\mathsf{a}_2) =: (\lambda,\mu) \in \Lambda^R \oplus \Lambda^R$$

Then (Jeffrey)

$$e^{2\pi i \operatorname{CS}(\rho)} = \varepsilon(\lambda, \mu) e^{i\omega((a_1, a_2), (\lambda, \mu))/2}$$

where $\varepsilon(\lambda_1, \lambda_2) \in \{\pm 1\}$ is a theta-characteristic.

• Now, match everything up (Prop. 5.28, Cor. 5.30)

Sketch of proof (cont.)

- On the other hand, $\rho \in \mathcal{M}$ may be considered as $\rho = [(A_1, A_2, A_3)] \in \mathcal{T} \times \mathcal{T} \times \mathsf{SU}(\mathcal{N})/\sim$, \mathcal{T} maximal torus.
- Take a_1, a_2 s.t. $\exp(2\pi i a_j) = A_j$. There is a Weyl group element $w \in W$ s.t.

$$\operatorname{\mathsf{wt}}_{\gamma}^{b}(\mathsf{a}_1,\mathsf{a}_2) - (\mathsf{a}_1,\mathsf{a}_2) =: (\lambda,\mu) \in \Lambda^R \oplus \Lambda^R$$

Then (Jeffrey)

$$e^{2\pi i \operatorname{CS}(\rho)} = \varepsilon(\lambda,\mu) e^{i\omega((a_1,a_2),(\lambda,\mu))/2}$$

where $\varepsilon(\lambda_1,\lambda_2) \in \{\pm 1\}$ is a theta-characteristic.

• Now, match everything up (Prop. 5.28, Cor. 5.30)

Sketch of proof (cont.)

- On the other hand, $\rho \in \mathcal{M}$ may be considered as $\rho = [(A_1, A_2, A_3)] \in T \times T \times \mathsf{SU}(N) / \sim$, T maximal torus.
- Take a_1, a_2 s.t. $\exp(2\pi i a_j) = A_j$. There is a Weyl group element $w \in W$ s.t.

$$\operatorname{\mathsf{wt}}^{b}_{\gamma}(\mathsf{a}_1,\mathsf{a}_2) - (\mathsf{a}_1,\mathsf{a}_2) =: (\lambda,\mu) \in \Lambda^R \oplus \Lambda^R$$

Then (Jeffrey)

$$e^{2\pi i \operatorname{CS}(\rho)} = \varepsilon(\lambda,\mu) e^{i\omega((a_1,a_2),(\lambda,\mu))/2}$$

where $\varepsilon(\lambda_1,\lambda_2)\in\{\pm 1\}$ is a theta-characteristic.

• Now, match everything up (Prop. 5.28, Cor. 5.30).

Generalizing the result

• Assumption N = 2,3 only used to simplify combinatorics.

•

Generalizing the result

- Assumption N = 2,3 only used to simplify combinatorics.
- Evaluating $Z_k(T_{t_{\infty}^b})$, G = SU(2), for g = 1 boils down to

$$\sum_{n=1}^{r-1} \exp\left(\frac{\pi i}{2r} b n^2\right)$$

Generalizing the result

- Assumption N = 2, 3 only used to simplify combinatorics.
- Evaluating $Z_k(T_{t_{\alpha}^b})$, G = SU(2), for $g \ge 2$ boils down to

$$\sum_{n=1}^{r-1} p(n) \exp\left(\frac{\pi i}{2r} b n^2\right),\,$$

where p is a polynomial (Section 5.5).

Recall the notion of a pseudo-Anosov mapping class:

Theorem (Nielsen-Thurston)

A mapping class $\varphi \in \mathsf{MCG}(\Sigma_g)$ is either

- finite order
- infinite order but has a power preserving an essential simple closed curve.
- pseudo-Anosov: there are transverse measured singular foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) , $\lambda > 1$ and a homeo. f, $[f] = \varphi$, s.t.

$$f(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s), \quad f(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u)$$

Here, λ is called the stretch factor of φ

Recall the notion of a pseudo-Anosov mapping class:

Theorem (Nielsen-Thurston)

A mapping class $\varphi \in \mathsf{MCG}(\Sigma_g)$ is either

- finite order
- infinite order but has a power preserving an essential simple closed curve.
- pseudo-Anosov: there are transverse measured singular foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) , $\lambda > 1$ and a homeo. f, $[f] = \varphi$, s.t.

$$f(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s), \quad f(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u).$$

Here, λ is called the stretch factor of φ

Recall the notion of a pseudo-Anosov mapping class:

Theorem (Nielsen–Thurston)

A mapping class $\varphi \in \mathsf{MCG}(\Sigma_g)$ is either

- finite order
- infinite order but has a power preserving an essential simple closed curve.
- pseudo-Anosov: there are transverse measured singular foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) , $\lambda > 1$ and a homeo. f, $[f] = \varphi$, s.t.

$$f(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s), \quad f(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda\mu^u).$$

Here, λ is called the stretch factor of φ

Recall the notion of a pseudo-Anosov mapping class:

$\mathsf{Theorem}$ (Nielsen $\mathsf{-Thurston}$)

A mapping class $\varphi \in \mathsf{MCG}(\Sigma_g)$ is either

- finite order
- infinite order but has a power preserving an essential simple closed curve.
- pseudo-Anosov: there are transverse measured singular foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) , $\lambda > 1$ and a homeo. f, $[f] = \varphi$, s.t.

$$f(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s), \quad f(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u).$$

Here, λ is called the stretch factor of φ .

Consider $\mathcal{M}=\mathcal{M}^d$. Let $\mathcal{K}_{\sigma}^{(k)}$ denote the Bergman kernel of the orthogonal projection $\pi_{\sigma}^k:C^{\infty}(\mathcal{M},\mathcal{L}^k)\to H^0(\mathcal{M}_{\sigma},\mathcal{L}_{\sigma}^k)$, i.e.

$$\pi_{\sigma}^{k}s(x) = \int_{\mathcal{M}} K_{\sigma}^{(k)}(x, y)s(y) \frac{\omega^{n}(y)}{n!(2\pi)^{n}},$$

for $s \in C^{\infty}(\mathcal{M}, \mathcal{L}^k)$. Suppose $\varphi \in MCG(\Sigma_g)$ with $graph(\varphi^*) \pitchfork diag \subseteq \mathcal{M} \times \mathcal{M}$.

Theorem (Karabegov–Schlichenmaier)

For y close to $x \in |\mathcal{M}|^{\varphi}$,

$$k^{-n}K_{\sigma}^{(k)}(x,y)\sim e^{k\chi(x,y)}b(x,y)$$

for functions χ , b defined close to (x,x), b(x,x) = 1, $n = \frac{1}{2} \dim \mathcal{M}$.

Consider $\mathcal{M}=\mathcal{M}^d$. Let $\mathcal{K}_{\sigma}^{(k)}$ denote the Bergman kernel of the orthogonal projection $\pi_{\sigma}^k:C^{\infty}(\mathcal{M},\mathcal{L}^k)\to H^0(\mathcal{M}_{\sigma},\mathcal{L}_{\sigma}^k)$, i.e.

$$\pi_{\sigma}^{k}s(x) = \int_{\mathcal{M}} K_{\sigma}^{(k)}(x, y)s(y) \frac{\omega^{n}(y)}{n!(2\pi)^{n}},$$

for $s \in C^{\infty}(\mathcal{M}, \mathcal{L}^k)$. Suppose $\varphi \in \mathsf{MCG}(\Sigma_g)$ with $\operatorname{graph}(\varphi^*) \pitchfork \operatorname{diag} \subseteq \mathcal{M} \times \mathcal{M}$.

Theorem (Karabegov–Schlichenmaier)

For y close to $x \in |\mathcal{M}|^{\varphi}$,

$$k^{-n}K_{\sigma}^{(k)}(x,y)\sim e^{k\chi(x,y)}b(x,y)$$

for functions χ , b defined close to (x,x), b(x,x) = 1, $n = \frac{1}{2} \dim \mathcal{M}$.

Consider $\mathcal{M}=\mathcal{M}^d$. Let $\mathcal{K}_{\sigma}^{(k)}$ denote the Bergman kernel of the orthogonal projection $\pi_{\sigma}^k:C^{\infty}(\mathcal{M},\mathcal{L}^k)\to H^0(\mathcal{M}_{\sigma},\mathcal{L}_{\sigma}^k)$, i.e.

$$\pi_{\sigma}^{k}s(x) = \int_{\mathcal{M}} K_{\sigma}^{(k)}(x, y)s(y) \frac{\omega^{n}(y)}{n!(2\pi)^{n}},$$

for $s \in C^{\infty}(\mathcal{M}, \mathcal{L}^k)$. Suppose $\varphi \in \mathsf{MCG}(\Sigma_g)$ with $\operatorname{graph}(\varphi^*) \pitchfork \operatorname{diag} \subseteq \mathcal{M} \times \mathcal{M}$.

Theorem (Karabegov-Schlichenmaier)

For y close to $x \in |\mathcal{M}|^{\varphi}$,

$$k^{-n}K_{\sigma}^{(k)}(x,y)\sim e^{k\chi(x,y)}b(x,y)$$

for functions χ , b defined close to (x,x), b(x,x)=1, $n=\frac{1}{2}\dim\mathcal{M}$.

Theorem (Andersen, Thm. 6.7)

Let γ be a curve in $\operatorname{Teich}(\Sigma_g)$ from σ_0 to σ_1 . Then there exists $g_{\gamma} \in C^{\infty}(\mathcal{M})$ s.t.

$$\left\| \operatorname{PT}_{oldsymbol{
abla}^{\operatorname{Hitchin}}}(\gamma) - \pi_{\sigma_1}^k g_\gamma \pi_{\sigma_0}^k
ight\| = \mathit{O}(1/k).$$

Let $L_X = \operatorname{Hess}_X(y \mapsto \chi(y, \varphi(y))).$

Theorem (Thm. 6.8)

We have

$$\operatorname{tr}(\rho_k(\varphi)) \sim \sum_{\mathbf{x} \in \operatorname{Fix}(\varphi: \mathcal{M} \to \mathcal{M})} \frac{\operatorname{tr}(\varphi: \mathcal{L}_{\mathbf{x}}^k \to \mathcal{L}_{\mathbf{x}}^k) g_{\gamma}(\mathbf{x}) \exp(i \operatorname{sign}(\mathcal{L}_{\mathbf{x}}/4))}{\sqrt{|\det \mathcal{L}_{\mathbf{x}}|}}$$

Theorem (Andersen, Thm. 6.7)

Let γ be a curve in $\operatorname{Teich}(\Sigma_g)$ from σ_0 to σ_1 . Then there exists $g_{\gamma} \in C^{\infty}(\mathcal{M})$ s.t.

$$\left\| \operatorname{PT}_{oldsymbol{
abla}^{\operatorname{Hitchin}}}(\gamma) - \pi_{\sigma_1}^k g_\gamma \pi_{\sigma_0}^k \right\| = O(1/k).$$

Let $L_x = \operatorname{Hess}_x(y \mapsto \chi(y, \varphi(y))).$

Theorem (Thm. 6.8)

We have

$$\operatorname{\mathsf{tr}}(
ho_k(\varphi)) \sim \sum_{x \in \operatorname{Fix}(\varphi: \mathcal{M} o \mathcal{M})} \frac{\operatorname{\mathsf{tr}}(\varphi: \mathcal{L}_x^k o \mathcal{L}_x^k) g_{\gamma}(x) \exp(i \operatorname{sign}(\mathcal{L}_x/4))}{\sqrt{|\det \mathcal{L}_x|}}.$$

Conjecture (AMU conjecture)

Let $\Sigma_{g,n}$ be a genus g surface with n coloured points, 2g+n>2, and let φ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k>k_0$. Moreover, the ρ_k determine the stretch factor of φ .

Theorem (Thm. 6.32)

Let G = SU(2). The conjecture is true for orientable pseudo-Anosovs φ of the six punctured sphere.

Proof

As in AMU: Tweak quantum reps to define reps of $MCG(\Sigma_0^6)$ for which the statement holds.

Conjecture (AMU conjecture)

Let $\Sigma_{g,n}$ be a genus g surface with n coloured points, 2g+n>2, and let φ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k>k_0$. Moreover, the ρ_k determine the stretch factor of φ .

Theorem (Thm. 6.32)

Let G = SU(2). The conjecture is true for orientable pseudo-Anosovs φ of the six punctured sphere.

Proof

As in AMU: Tweak quantum reps to define reps of $MCG(\Sigma_0^6)$ for which the statement holds.

Conjecture (AMU conjecture)

Let $\Sigma_{g,n}$ be a genus g surface with n coloured points, 2g+n>2, and let φ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k>k_0$. Moreover, the ρ_k determine the stretch factor of φ .

Theorem (Thm. 6.32)

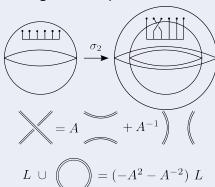
Let G = SU(2). The conjecture is true for orientable pseudo-Anosovs φ of the six punctured sphere.

Proof

As in AMU: Tweak quantum reps to define reps of $MCG(\Sigma_0^6)$ for which the statement holds.

Proof (cont.)

• Let $\rho_A^{(S)}$ denote the generic action – induced by the action of B_6 on TL_6 – on the 5-dimensional space V of Kauffman skeins in B^3 meeting S^2 in six points.



- The representation $\rho_A = A^{3/5} \rho_A^{(S)}$ descends to a representation of $MCG(\Sigma_0^6) = B_6 / \sim$.
- On the other hand, with $A = q^{-1/4}$, $\sigma_i \mapsto -A^{-1}\rho_A^{(3)}(\sigma_i)$ is equivalent to Jones' Hecke algebra representation $\tilde{\rho}_q$ associated to \Box (see Wang).
- Kasahara: $\tilde{\rho}_{-1}$ is equivalent to the induced action on $\wedge^2 H_1(\Sigma_2, \mathbb{Z})/\omega\mathbb{Z} \otimes \operatorname{sgn}$ via Birman–Hilden.
- Specialize to $A = A_k$ with $A_k^2 \to -i$ as in AMU
- For the pseudo-Anosovs of the claim, the stretch factor is the spectral radius of this homology action.

- The representation $\rho_A = A^{3/5} \rho_A^{(S)}$ descends to a representation of $MCG(\Sigma_0^6) = B_6 / \sim$.
- On the other hand, with $A = q^{-1/4}$, $\sigma_i \mapsto -A^{-1}\rho_A^{(S)}(\sigma_i)$ is equivalent to Jones' Hecke algebra representation $\tilde{\rho}_q$ associated to (see Wang).
- Kasahara: $\tilde{\rho}_{-1}$ is equivalent to the induced action on $\wedge^2 H_1(\Sigma_2, \mathbb{Z})/\omega \mathbb{Z} \otimes \operatorname{sgn}$ via Birman–Hilden.
- Specialize to $A = A_k$ with $A_k^2 \to -i$ as in AMU.
- For the pseudo-Anosovs of the claim, the stretch factor is the spectral radius of this homology action.

- The representation $\rho_A = A^{3/5} \rho_A^{(S)}$ descends to a representation of $MCG(\Sigma_0^6) = B_6 / \sim$.
- On the other hand, with $A = q^{-1/4}$, $\sigma_i \mapsto -A^{-1}\rho_A^{(S)}(\sigma_i)$ is equivalent to Jones' Hecke algebra representation $\tilde{\rho}_q$ associated to (see Wang).
- Kasahara: $\tilde{\rho}_{-1}$ is equivalent to the induced action on $\wedge^2 H_1(\Sigma_2, \mathbb{Z})/\omega\mathbb{Z} \otimes \operatorname{sgn}$ via Birman–Hilden.
- Specialize to $A=A_k$ with $A_k^2 o -i$ as in AMU.
- For the pseudo-Anosovs of the claim, the stretch factor is the spectral radius of this homology action.

- The representation $\rho_A = A^{3/5} \rho_A^{(S)}$ descends to a representation of $MCG(\Sigma_0^6) = B_6 / \sim$.
- On the other hand, with $A = q^{-1/4}$, $\sigma_i \mapsto -A^{-1}\rho_A^{(S)}(\sigma_i)$ is equivalent to Jones' Hecke algebra representation $\tilde{\rho}_q$ associated to (see Wang).
- Kasahara: $\tilde{\rho}_{-1}$ is equivalent to the induced action on $\wedge^2 H_1(\Sigma_2, \mathbb{Z})/\omega\mathbb{Z} \otimes \operatorname{sgn}$ via Birman–Hilden.
- Specialize to $A = A_k$ with $A_k^2 \to -i$ as in AMU.
- For the pseudo-Anosovs of the claim, the stretch factor is the spectral radius of this homology action.

- The representation $\rho_A = A^{3/5} \rho_A^{(S)}$ descends to a representation of $MCG(\Sigma_0^6) = B_6 / \sim$.
- On the other hand, with $A=q^{-1/4}$, $\sigma_i\mapsto -A^{-1}\rho_A^{(S)}(\sigma_i)$ is equivalent to Jones' Hecke algebra representation $\tilde{\rho}_q$ associated to (see Wang).
- Kasahara: $\tilde{\rho}_{-1}$ is equivalent to the induced action on $\wedge^2 H_1(\Sigma_2, \mathbb{Z})/\omega\mathbb{Z} \otimes \operatorname{sgn}$ via Birman–Hilden.
- Specialize to $A = A_k$ with $A_k^2 \to -i$ as in AMU.
- For the pseudo-Anosovs of the claim, the stretch factor is the spectral radius of this homology action.

Fin