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The Chern-Simons partition function

> Let k € N (called the level) and define the Chern-Simons
partition function

Z[](;)hyS(M): /A P

P

exp(2rik CS([A])) DA € C.

Witten '89: This defines a topological invariant.

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zj is part of a
2 + 1-dimensional topological quantum field theory (Z, V):

)Y
V(¥)
Z(M)

Constructing quantum representations

Several equivalent approaches to quantum representations exist:

» Categorical /combinatorial through modular functors: (Vk, pk)

obtained from representation theory of Ug(sly), the skein

theory of the Kauffman bracket/HOMFLYPT polynomial, ...

» Geometric quantization (g > 2): £ — M is the pre-quantum
line bundle over the moduli space of flat SU(/V)-connections

M = Homg(i1(E), SU(N))/ SU(N),

Vi = H(MY, LX), o € Teich(X). Then py is defined by the

parallel transport of Hitchin connection in
HO(M?, LK) — Teich(X).

Notation

> Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.

> Let A= QY(M,g) be the space of connections in
G XM — M, and let G = C>°(M, G) be the group of gauge
transformations acting on A.

» Define the Chern—Simons functional CS : A — R by
CS(A) = i/ (AN A+ 2ANANA)
" 82 Jm 3 ’

» For g € G, we have CS(g*A) — CS(A) € Z, and we can
consider

CS:A/G »R/Z

Topological quantum field theory

Theorem (Reshetikhin-Turaev, 1991)

One can construct a topological invariant Zy of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Z} hYs s supposed to do.

Goal

Understand large k asymptotics of Zx(M) in the case where M is a
mapping torus.

Quantum representations
The data (Z, Vi) satisfies a number of axioms.

Example

Let ¢ : ¥ — X be a diffeomorphism and consider the mapping
cylinder and the mapping torus

M, =% x[0,3] U, X x [4,1]
T =L x[0,1]/((x,0) ~ (#(x),1)).

Then Z,(M,) : Vi(X) = Vi(X) depend on ¢ only up to isotopy.
Define the (projective) quantum representations
P MCG(X) — PAut(Vi(X)) by pi([e]) = Zk(M,). Furthermore,
Zi(My) = Vi) and Zi(T,) = tr Zk(M,) = tr pic([¢p])-

Revised goal
Describe pi(f) for f € MCG(X).

A Dehn twist

T
G

Figure: The Dehn twist t, about a curve 7.




The Dehn—Lickorish theorem

Theorem (Dehn-Lickorish)

The mapping class group MCG(X) is generated by a certain finite
set of Dehn twists about curves in X.

Figure: The Dehn-Lickorish generators in a genus 3 surface.

Asymptotic expansion conjecture
Recall that the partition function looked like

thys( M) = / 2Tk CS(Ap A
AJG

Let M be the moduli space of flat connections on a 3-manifold M,

and let 0 = ¢, ¢y, . . ., ¢y be the values of CS on M.

Conjecture (The asymptotic expansion conjecture)

There exist d; € 37, b; € C, al € C for j=0,...,n, | € Ny such
that Zy(M) has the asymptotic expansion

n o0
Zi(M) ~kos00 D €14 b; (1 +3 a,/-r_’/2> 7

j=0 I=1

where r = k + N.

The AEC for Dehn twist bundles

Sketch of proof (cont.)

> Basis is set up (Lem. 4.4) such that pk(tf{’) is diagonal w.r.t.
{va} with eigenvalues of the form

g0 = exp (bWTI(/\, A)) .

> Jeffrey's quadratic reciprocity gives formula for
Soaenwjarmnn 8(A)-
> Evaluating 37, p, g(A) is combinatorics (N = 2,3).
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Generalizing the result

» Assumption N = 2,3 only used to simplify combinatorics.
> Evaluating Zx(T.s), G = SU(2), for g =1 boils down to

b
b
= i
w2
Z exp <2rbn )
n=1
Evaluating Zk(ng), G = SU(2), for g > 2 boils down to

r—1 .
Tl
Zpn?
> pln)exp (51602

n=1

where p is a polynomial (Section 5.5).

An algorithm

Quantum reps of Dehn-Lickorish generators implemented in
PARI/GP by A’'Campo-Masbaum.

Theorem (Masbaum)

Forg >2, k#1,2,4,8, there exists ¢ € MCG(Xg) s.t. pi(yp) has
infinite order.

Theorem (Masbaum)

Forg >2, k#1,2,4,8, there exists ¢ € MCG(X,) s.t. pi(p) has
infinite order.

“Proof"” for k = 8.

The AEC for Dehn twist bundles

Let v in S x S! be non-trivial, and let t, be the Dehn twist about
7.
Theorem (Cor. 5.20 and Cor. 5.30)

The AEC holds for the mapping tori Ttg, b #0, when G =SU(2)
or G =SU(3).

Sketch of proof
Explicit calculation (Cor. 5.18 and Thm. 5.24) of Zk(Tt%,):

> Vi(S x S') has natural basis vectors v, labelled by
Pe={\eint(P ) NAY | (N am) < r}.

Here: A" is the weight lattice, P, is the positive Weyl alcove,
ap, maximal root.

The AEC for Dehn twist bundles

Sketch of proof (cont.)

> On the other hand, p € M may be considered as
p=[(A1,A2,A3)] € T x T xSU(N)/ ~, T maximal torus.

> Take a1, ap s.t. exp(2mia;) = Aj. There is a Weyl group
element w € W s.t.

Wté’(al, a) — (a1, a) = (\, 1) e AR @ AR

> Then (Jeffrey)
21 CS(0) = (), p)ef((an2) (Am))/2,
where e(A1, X\2) € {£1} is a theta-characteristic.

» Now, match everything up (Prop. 5.28, Cor. 5.30).
O

The Nielsen—Thurston classification

Recall the notion of a pseudo-Anosov mapping class:

Theorem (Nielsen—Thurston)
A mapping class ¢ € MCG(X,) is either
> finite order
> infinite order but has a power preserving an essential simple
closed curve.

» pseudo-Anosov: there are transverse measured singular
foliations (F*, 1i°), (FY,pu"), A > 1 and a homeo. f, [f] = ¢,
s.t.

F(F2, 1) = (FSATH0), F(FY ) = (FU ).

Here, \ is called the stretch factor of .




Asymptotics via geometric quantization
Consider M = M9, Let K(gk) denote the Bergman kernel of the
orthogonal projection 7% : C®*(M, LK) — HO(M,, LK), i.e.

st = [ KOst e

for s € C°(M, L¥). Suppose ¢ € MCG(X,) with

graph(p™) M diag € M x M.

Theorem (Karabegov—-Schlichenmaier)

For y close to x € | M|?,
kK"K (x, y) ~ X 0b(x, )

for functions x, b defined close to (x,x), b(x,x) =1,
n= % dim M.

The AMU conjecture

Conjecture (AMU conjecture)

Let ¥4, be a genus g surface with n coloured points, 2g +n > 2,
and let ¢ be a pseudo-Anosov. Then there exists ko s.t. px(p) has
infinite order for k > ko. Moreover, the py determine the stretch
factor of .

Theorem (Thm. 6.32)

Let G = SU(2). The conjecture is true for orientable
pseudo-Anosovs ¢ of the six punctured sphere.

Proof

As in AMU: Tweak quantum reps to define reps of MCG(X$) for
which the statement holds.

The AMU conjecture

Proof (cont.)

> The representation pg = A3/5p£\5) descends to a
representation of MCG(Z§) = Bg/ ~.

> On the other hand, with A = g~ /4, 5; — —A_lp(As)(cr,-) is
equivalent to Jones' Hecke algebra representation jq
associated to @ (see Wang).

» Kasahara: p_j is equivalent to the induced action on
A2Hi(X2,Z)/wZ @ sgn via Birman—Hilden.

> Specialize to A = Ay with AZ — —i as in AMU.

» For the pseudo-Anosovs of the claim, the stretch factor is the
spectral radius of this homology action.
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Asymptotics via geometric quantization

Theorem (Andersen, Thm. 6.7)

Let 7y be a curve in Teich(Xz) from og to o1. Then there exists
gy € C®(M) s.t.

= 0(1/k).

HPTVHitchin (7) - 7r§1g77r§0

Let L, = Hessx(y — x(y, ©(y)))-

Theorem (Thm. 6.8)
We have

tr(p : LXK — £X) g, (x) exp(isign(Lx/4))

tr(pi(p)) ~

x€Fix(pM—>M) |det Ly

The AMU conjecture

Proof (cont.)

> Let pi‘s) denote the generic action — induced by the action of
Bs on TLg — on the 5-dimensional space V of Kauffman
skeins in B3 meeting S? in six points.
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