Semi-classical properties of the quantum representations of mapping class groups PhD defence

Søren Fuglede Jørgensen Supervisor: Jørgen Ellegaard Andersen

Aarhus University

August 29th 2013

Notation

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(\mathcal{M}, \mathfrak{g})$ be the space of connections in $G \times \mathcal{M} \to \mathcal{M}$, and let $\mathcal{G} \cong C^{\infty}(\mathcal{M}, G)$ be the group of gauge transformations acting on \mathcal{A} .
- \blacktriangleright Define the Chern–Simons functional CS : $\mathcal{A} \rightarrow \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

► For $g \in G$, we have $CS(g^*A) - CS(A) \in \mathbb{Z}$, and we can consider $CS : A/G \to \mathbb{R}/\mathbb{Z}$

The Chern–Simons partition function

▶ Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}_P/\mathcal{G}_P} \exp(2\pi i k \operatorname{CS}([A])) \mathcal{D}A \in \mathbb{C}.$$

Witten '89: This defines a topological invariant.

Topological quantum field theory

Theorem (Reshetikhin-Turaev, 1991)

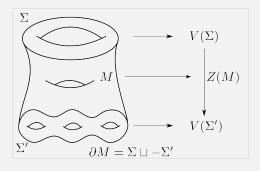
One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Goal

Understand large k asymptotics of $Z_k(M)$ in the case where M is a mapping torus.

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :



Constructing quantum representations

Several equivalent approaches to quantum representations exist:

- ► Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- ▶ Geometric quantization $(g \ge 2)$: $\mathcal{L} \to \mathcal{M}^d$ is the pre-quantum line bundle over the moduli space of flat SU(*N*)-connections

 $\mathcal{M}^{d} = \operatorname{Hom}_{d}(\tilde{\pi}_{1}(\Sigma), \operatorname{SU}(N)) / \operatorname{SU}(N),$

 $V_k = H^0(\mathcal{M}^d_\sigma, \mathcal{L}^s_\sigma), \sigma \in \operatorname{Teich}(\Sigma).$ Then ρ_k is defined by the parallel transport of Hitchin connection in $H^0(\mathcal{M}^d, \mathcal{L}^k) \to \operatorname{Teich}(\Sigma).$

Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder and the mapping torus

$$\begin{split} \mathsf{M}_{\varphi} &= \mathsf{\Sigma} \times [0, \frac{1}{2}] \cup_{\varphi} \mathsf{\Sigma} \times [\frac{1}{2}, 1] \\ \mathsf{T}_{\varphi} &= \mathsf{\Sigma} \times [0, 1] / ((x, 0) \sim (\varphi(x), 1)). \end{split}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the (projective) quantum representations $\rho_k: MCG(\Sigma) \to PAut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \operatorname{tr} Z_k(M_{\varphi}) = \operatorname{tr} \rho_k([\varphi])$.

Revised goal Describe $\rho_k(f)$ for $f \in MCG(\Sigma)$.

1

A Dehn twist

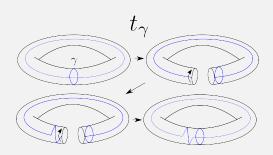


Figure: The Dehn twist t_{γ} about a curve γ .

The Dehn–Lickorish theorem

Theorem (Dehn–Lickorish)

The mapping class group $MCG(\Sigma)$ is generated by a certain finite set of Dehn twists about curves in Σ .

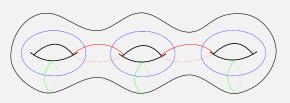


Figure: The Dehn-Lickorish generators in a genus 3 surface.

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A_k$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j^l \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i r c_j} r^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l r^{-l/2} \right),$$

where r = k + N.

The AEC for Dehn twist bundles

Sketch of proof (cont.)

▶ Basis is set up (Lem. 4.4) such that $\rho_k(t_{\gamma}^b)$ is diagonal w.r.t. $\{v_{\lambda}\}$ with eigenvalues of the form

$$g(\lambda) = \exp\left(b\frac{\pi i}{r}\langle\lambda,\lambda\rangle\right)$$

- Jeffrey's quadratic reciprocity gives formula for Σ_{λ∈Λ^w/2rNΛ^w} g(λ).
- Evaluating $\sum_{\lambda \in \tilde{P}_{L}} g(\lambda)$ is combinatorics (N = 2, 3).

Generalizing the result

- Assumption N = 2,3 only used to simplify combinatorics.
- Evaluating $Z_k(T_{t_x^b})$, G = SU(2), for g = 1 boils down to

$$\sum_{n=1}^{r-1} \exp\left(\frac{\pi i}{2r} bn^2\right)$$

Evaluating $Z_k(T_{t_{\gamma}^b})$, G = SU(2), for $g \ge 2$ boils down to

$$\sum_{n=1}^{r-1} p(n) \exp\left(\frac{\pi i}{2r} bn^2\right),$$

where p is a polynomial (Section 5.5).

An algorithm

Quantum reps of Dehn–Lickorish generators implemented in $\ensuremath{\mathsf{PARI}}\xspace/\ensuremath{\mathsf{PARI}}\xspace$ by A'Campo–Masbaum.

Theorem (Masbaum)

For $g \ge 2$, $k \ne 1, 2, 4, 8$, there exists $\varphi \in MCG(\Sigma_g)$ s.t. $\rho_k(\varphi)$ has infinite order.

Theorem (Masbaum)

For $g \ge 2$, $k \ne 1, 2, 4, \aleph$, there exists $\varphi \in MCG(\Sigma_g)$ s.t. $\rho_k(\varphi)$ has infinite order.

"Proof" for k = 8.

The AEC for Dehn twist bundles

LL_SU(8); init_boom([0],2); abs(subst(tra KLEVEL= 8, POL= $\lambda^{-16} - \lambda^{-12} + \lambda^{-8} - \lambda^{-4}$

Let γ in $S^1\times S^1$ be non-trivial, and let t_γ be the Dehn twist about $\gamma.$

Theorem (Cor. 5.20 and Cor. 5.30)

The AEC holds for the mapping tori $T_{t_{\gamma}^{b}}$, $b \neq 0$, when G = SU(2) or G = SU(3).

Sketch of proof

Explicit calculation (Cor. 5.18 and Thm. 5.24) of $Z_k(T_{t_{\gamma}^b})$:

• $V_k(S^1 imes S^1)$ has natural basis vectors v_λ labelled by

$$\tilde{P}_{k} = \{\lambda \in \operatorname{int}(P_{+}) \cap \Lambda^{w} \mid \langle \lambda, \alpha_{m} \rangle < r\}.$$

Here: Λ^w is the weight lattice, P_+ is the positive Weyl alcove, α_m maximal root.

The AEC for Dehn twist bundles

Sketch of proof (cont.)

- On the other hand, $\rho \in \mathcal{M}$ may be considered as $\rho = [(A_1, A_2, A_3)] \in \mathcal{T} \times \mathcal{T} \times SU(N) / \sim, \mathcal{T}$ maximal torus.
- ▶ Take a_1, a_2 s.t. $\exp(2\pi i a_j) = A_j$. There is a Weyl group element $w \in W$ s.t.

 $\mathit{wt}^b_\gamma(\mathit{a}_1, \mathit{a}_2) - (\mathit{a}_1, \mathit{a}_2) =: (\lambda, \mu) \in \Lambda^R \oplus \Lambda^R$

Then (Jeffrey)

 $e^{2\pi i \operatorname{CS}(\rho)} = \varepsilon(\lambda, \mu) e^{i\omega((a_1, a_2), (\lambda, \mu))/2},$

- where $arepsilon(\lambda_1,\lambda_2)\in\{\pm1\}$ is a theta-characteristic.
- ▶ Now, match everything up (Prop. 5.28, Cor. 5.30).

The Nielsen–Thurston classification

Recall the notion of a pseudo-Anosov mapping class:

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma_g)$ is either
 - finite order
 - infinite order but has a power preserving an essential simple closed curve.
- pseudo-Anosov: there are transverse measured singular foliations (𝓕^s, μ^s), (𝓕^u, μ^u), λ > 1 and a homeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^{s},\mu^{s})=(\mathcal{F}^{s},\lambda^{-1}\mu^{s}), \ \ f(\mathcal{F}^{u},\mu^{u})=(\mathcal{F}^{u},\lambda\mu^{u}).$$

Here, λ is called the stretch factor of arphi.

Asymptotics via geometric quantization

Consider $\mathcal{M} = \mathcal{M}^d$. Let $\mathcal{K}_{\sigma}^{(k)}$ denote the Bergman kernel of the orthogonal projection $\pi_{\sigma}^k : C^{\infty}(\mathcal{M}, \mathcal{L}^k) \to H^0(\mathcal{M}_{\sigma}, \mathcal{L}_{\sigma}^k)$, i.e.

$$\pi_{\sigma}^{k} s(x) = \int_{\mathcal{M}} \mathcal{K}_{\sigma}^{(k)}(x, y) s(y) \frac{\omega^{n}(y)}{n! (2\pi)^{n}},$$

for $s \in C^{\infty}(\mathcal{M}, \mathcal{L}^k)$. Suppose $\varphi \in MCG(\Sigma_{\varphi})$ with

$$\operatorname{graph}(\varphi^*) \pitchfork \operatorname{diag} \subseteq \mathcal{M} \times \mathcal{M}.$$

Theorem (Karabegov–Schlichenmaier)

For y close to $x \in |\mathcal{M}|^{\varphi}$,

 $k^{-n}K_{\sigma}^{(k)}(x,y) \sim e^{k\chi(x,y)}b(x,y)$

for functions χ , b defined close to (x, x), b(x, x) = 1, $n=\frac{1}{2}\dim \mathcal{M}.$

The AMU conjecture

Conjecture (AMU conjecture)

Let $\Sigma_{g,n}$ be a genus g surface with n coloured points, 2g + n > 2, and let φ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_k(\varphi)$ has infinite order for $k > k_0$. Moreover, the ρ_k determine the stretch factor of φ .

Theorem (Thm. 6.32)

Let G = SU(2). The conjecture is true for orientable pseudo-Anosovs φ of the six punctured sphere.

Proof

As in AMU: Tweak quantum reps to define reps of $MCG(\Sigma_0^6)$ for which the statement holds.

The AMU conjecture

Proof (cont.)

- The representation $\rho_A = A^{3/5} \rho_A^{(S)}$ descends to a representation of MCG(Σ_0^6) = B_6/\sim .
- On the other hand, with $A = q^{-1/4}$, $\sigma_i \mapsto -A^{-1}\rho_A^{(S)}(\sigma_i)$ is equivalent to Jones' Hecke algebra representation $\tilde{\rho}_q$ associated to (see Wang).

- Kasahara: $\tilde{\rho}_{-1}$ is equivalent to the induced action on $\wedge^2 H_1(\Sigma_2, \mathbb{Z})/\omega\mathbb{Z} \otimes \operatorname{sgn}$ via Birman–Hilden.
- Specialize to $A = A_k$ with $A_k^2 \rightarrow -i$ as in AMU.
- ► For the pseudo-Anosovs of the claim, the stretch factor is the spectral radius of this homology action.

Asymptotics via geometric quantization

Theorem (Andersen, Thm. 6.7)

Let γ be a curve in $\operatorname{Teich}(\Sigma_g)$ from σ_0 to σ_1 . Then there exists $g_{\gamma} \in C^{\infty}(\mathcal{M})$ s.t.

$$\left\| \operatorname{PT}_{\boldsymbol{\nabla}^{\operatorname{Hitchin}}}(\gamma) - \pi_{\sigma_1}^k g_{\gamma} \pi_{\sigma_0}^k \right\| = O(1/k).$$

Let $L_x = \operatorname{Hess}_x(y \mapsto \chi(y, \varphi(y))).$

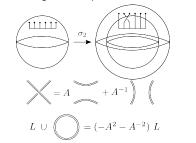
Theorem (Thm. 6.8) We have

$$\mathsf{tr}(\rho_k(\varphi)) \sim \sum_{x \in \mathrm{Fix}(\varphi: \mathcal{M} \to \mathcal{M})} \frac{\mathsf{tr}(\varphi: \mathcal{L}_x^k \to \mathcal{L}_x^k) g_{\gamma}(x) \exp(i \mathrm{sign}(L_x/4))}{\sqrt{|\det L_x|}}.$$

The AMU conjecture

Proof (cont.)

• Let $\rho_A^{(S)}$ denote the generic action – induced by the action of B_6 on TL_6 – on the 5-dimensional space V of Kauffman skeins in B^3 meeting S^2 in six points.



Fin