Quantum representations and their asymptotics Junior Geometry and Topology seminar, Oxford 2012

Søren Fuglede Jørgensen Joint with Jørgen Ellegaard Andersen

Aarhus University

November 15th 2012

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $A \cong \Omega^1(M, \mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $G \cong C^{\infty}(M, G)$ be the group of gauge transformations acting on A.
- Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$CS(A) = \frac{1}{8\pi^2} \int_M tr(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $CS(g^*A) - CS(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(M,\mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $\mathcal{G} \cong C^\infty(M,G)$ be the group of gauge transformations acting on \mathcal{A} .
- ullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$CS(A) = \frac{1}{8\pi^2} \int_M tr(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $\mathsf{CS}(g^*A) - \mathsf{CS}(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(M,\mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $\mathcal{G} \cong C^\infty(M,G)$ be the group of gauge transformations acting on \mathcal{A} .
- ullet Define the Chern–Simons functional CS : $\mathcal{A}
 ightarrow \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr} (A \wedge dA + rac{2}{3} A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $CS(g^*A) - CS(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(M,\mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $\mathcal{G} \cong C^\infty(M,G)$ be the group of gauge transformations acting on \mathcal{A} .
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = \frac{1}{8\pi^2} \int_{M} \mathsf{tr}(A \wedge dA + \frac{2}{3} A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $\mathsf{CS}(g^*A) - \mathsf{CS}(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

The Chern–Simons partition function

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A \in \mathbb{C}.$$

Witten '89: This defines a topological invariant of closed 3-manifolds.

Main question

What does $\int_{A/G} \mathcal{D}A$ mean?

The Chern-Simons partition function

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A \in \mathbb{C}.$$

Witten '89: This defines a topological invariant of closed 3-manifolds.

Main question

What does $\int_{A/G} \mathcal{D}A$ mean?

The Chern-Simons partition function

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A \in \mathbb{C}.$$

Witten '89: This defines a topological invariant of closed 3-manifolds.

Main question

What does $\int_{A/G} \mathcal{D}A$ mean?

A possible answer

Theorem (Reshetikhin-Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way $Z_k^{\rm phys}$ is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

$$Z_k^{\text{phys}}(M) = Z_k(M).$$

Goal of this talk

Describe $Z_k(M)$ in the case where M is a mapping torus

A possible answer

Theorem (Reshetikhin-Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way $Z_k^{\rm phys}$ is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

$$Z_k^{\text{phys}}(M) = Z_k(M).$$

Goal of this talk

Describe $Z_k(M)$ in the case where M is a mapping torus

A possible answer

Theorem (Reshetikhin-Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way $Z_k^{\rm phys}$ is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

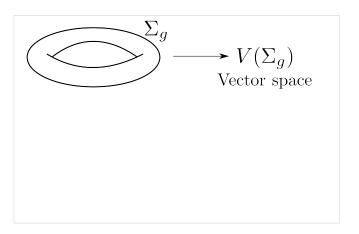
$$Z_k^{\text{phys}}(M) = Z_k(M).$$

Goal of this talk

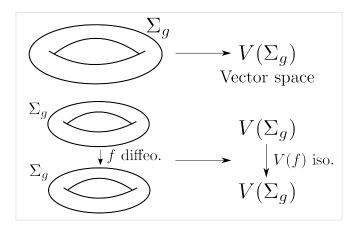
Describe $Z_k(M)$ in the case where M is a mapping torus.

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :

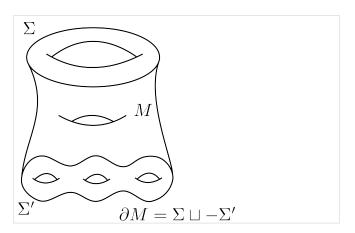
Reshetikhin and Turaev proved that the invariant Z_k is part of a 2+1-dimensional topological quantum field theory (Z_k, V_k) :



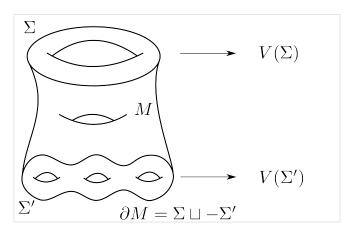
Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :



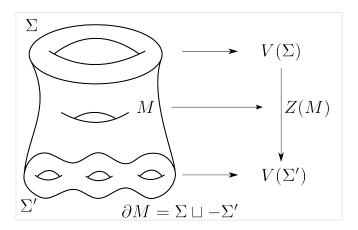
Reshetikhin and Turaev proved that the invariant Z_k is part of a 2+1-dimensional topological quantum field theory (Z_k, V_k) :



Reshetikhin and Turaev proved that the invariant Z_k is part of a 2+1-dimensional topological quantum field theory (Z_k, V_k) :



Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :



Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$M_{\varphi} = \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1]$$

$$T_{\varphi} = \Sigma \times [0, 1]/((x, 0) \sim (\varphi(x), 1)).$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the *quantum representations* $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{Aut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \mathsf{tr}\, Z_k(M_{\varphi}) = \mathsf{tr}\, \rho_k([\varphi])$.

Revised goa

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$egin{aligned} M_{arphi} &= \Sigma imes [0,rac{1}{2}] \cup_{arphi} \Sigma imes [rac{1}{2},1] \ T_{arphi} &= \Sigma imes [0,1]/((x,0) \sim (arphi(x),1)). \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{Aut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \operatorname{tr} Z_k(M_{\varphi}) = \operatorname{tr} \rho_k([\varphi])$.

Revised goal

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$M_{\varphi} = \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1]$$

 $T_{\varphi} = \Sigma \times [0, 1]/((x, 0) \sim (\varphi(x), 1)).$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the *quantum representations* $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{Aut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \operatorname{tr} Z_k(M_{\varphi}) = \operatorname{tr} \rho_k([\varphi])$.

Revised goa

Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$egin{aligned} M_{arphi} &= \Sigma imes [0,rac{1}{2}] \cup_{arphi} \Sigma imes [rac{1}{2},1] \ T_{arphi} &= \Sigma imes [0,1]/((x,0) \sim (arphi(x),1)). \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the *quantum representations* $\rho_k: \mathsf{MCG}(\Sigma) \to \mathsf{Aut}(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = \operatorname{tr} Z_k(M_{\varphi}) = \operatorname{tr} \rho_k([\varphi])$.

Revised goal

A first example

Example

Let $f = id \in MCG(\Sigma_g)$, G = SU(2). Then

$$Z_k(T_{\mathsf{id}}) = Z_k(\Sigma_g \times S^1) = \operatorname{tr} \rho_k(\mathsf{id}) = \dim V_k(\Sigma_g)$$
$$= \left(\frac{k+2}{2}\right)^{g-1} \sum_{j=1}^{k+1} \left(\sin^2 \frac{j\pi}{k+2}\right)^{1-g} \in \mathbb{N}.$$

This is the Verlinde formula. For example,

$$\dim V_k(S^2)=1,$$

$$\dim V_k(S^1\times S^1)=k+1,$$

$$\dim V_k(\Sigma_2)=\frac{1}{6}(k+1)(k+2)(k+3).$$

A first example

Example

Let $f = id \in MCG(\Sigma_g)$, G = SU(2). Then

$$Z_k(T_{\mathsf{id}}) = Z_k(\Sigma_g \times S^1) = \operatorname{tr} \rho_k(\mathsf{id}) = \dim V_k(\Sigma_g)$$
$$= \left(\frac{k+2}{2}\right)^{g-1} \sum_{j=1}^{k+1} \left(\sin^2 \frac{j\pi}{k+2}\right)^{1-g} \in \mathbb{N}.$$

This is the Verlinde formula. For example,

$$\dim V_k(S^2)=1,$$
 $\dim V_k(S^1 imes S^1)=k+1,$ $\dim V_k(\Sigma_2)=rac{1}{6}(k+1)(k+2)(k+3).$

A Dehn twist

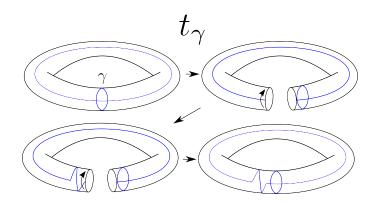


Figure: The Dehn twist t_{γ} about a curve γ .

The Dehn-Lickorish theorem

Theorem (Dehn-Lickorish)

The mapping class group $MCG(\Sigma)$ is generated by a certain finite set of Dehn twists about curves in Σ .

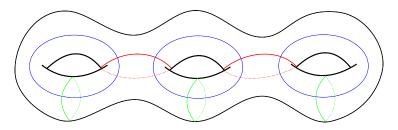


Figure: The Dehn-Lickorish generators in a genus 3 surface.

A second example

Example

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

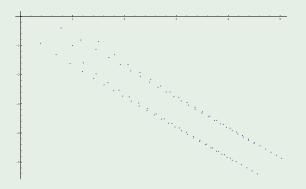


Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100

A second example

Example

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

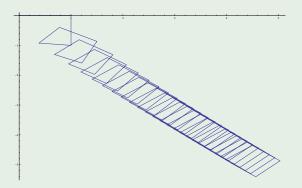


Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100

A second example

Example

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

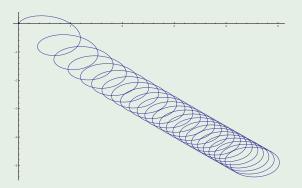


Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j^l \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2} \right)$$

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j' \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2} \right)$$

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D} A.$$

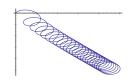
Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j^l \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2} \right)$$

The example revisited



$$Z_{k-2}(T_{t_{\gamma}}) = e^{\frac{\pi i}{2k}} \left(\sqrt{k/2} e^{-\pi i/4} e^{2\pi i k 0} - \frac{e^{2\pi i k 3/4}}{2} - \frac{1}{2} \right).$$

$$\mathcal{M}(T_{t_{\gamma}}):$$

$$c_0 = 0 \qquad c_1 = \frac{3}{4}$$

$$d_0 = \frac{1}{2} \qquad d_1 = 0$$

Theorems

Theorem (Jeffrey, '92)

The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2,\mathbb{Z})$ with |tr(f)| > 2, G = SU(2).

Theorem (Andersen, FJ)

The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ has trace $|tr(f)| \leq 2$, G = SU(2), SU(3).

Theorem (Andersen '95)

The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order G = SU(N).

Theorems

Theorem (Jeffrey, '92)

The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2,\mathbb{Z})$ with |tr(f)| > 2, G = SU(2).

Theorem (Andersen, FJ)

The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ has trace $|tr(f)| \leq 2$, G = SU(2), SU(3).

Theorem (Andersen '95`

The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order G = SU(N).

Theorems

Theorem (Jeffrey, '92)

The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2,\mathbb{Z})$ with |tr(f)| > 2, G = SU(2).

Theorem (Andersen, FJ)

The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ has trace $|tr(f)| \leq 2$, G = SU(2), SU(3).

Theorem (Andersen '95)

The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order, G = SU(N).

Summary of torus bundles

Table: Summary of phases and growth rates of quantum invariants of torus bundles.

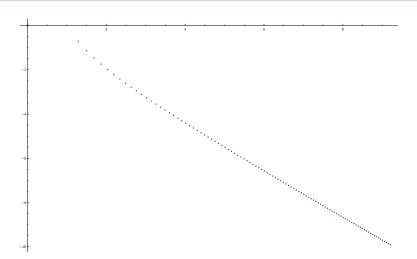


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g=1, m=2, G=SU(2).

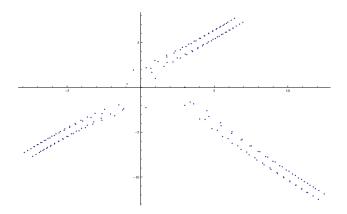


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g=1, m=3, G=SU(2).

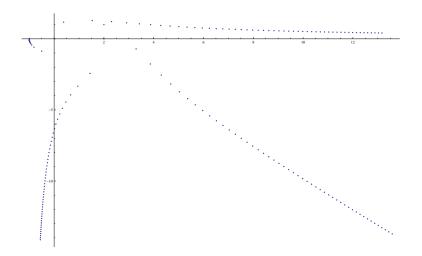


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g=1, m=4, G=SU(2).

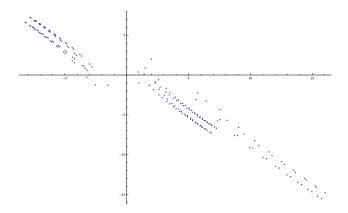


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g=1, m=5, G=SU(2).

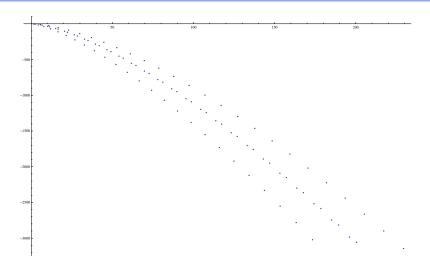


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g=2, m=1, G=SU(2).

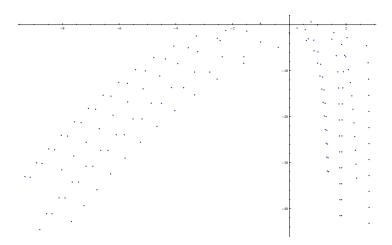


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g=1, m=1, G=SU(3).

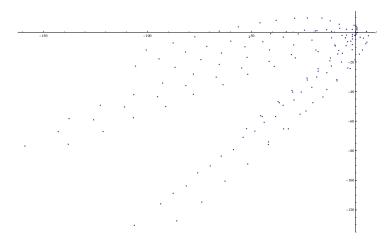


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g=1, m=1, G=SU(4).

Mapping tori with links

- Assume that M contains a framed link L, and choose for every component L_i of L a finite dimensional representation R_i of G = SU(N).
- Consider

$$Z_k^{\mathrm{phys}}(M, L, R) = \int_{\mathcal{A}_P/\mathcal{G}_P} \prod_i \mathrm{tr}(R_i(\mathrm{hol}_A(L_i))) \exp(2\pi i k \operatorname{CS}(A)) \mathcal{D}A.$$

• Again, there is a corresponding mathematical invariant $Z_k(M, L, R)$, when components of L are labelled by representations R_i .

Mapping tori with links

- Assume that M contains a framed link L, and choose for every component L_i of L a finite dimensional representation R_i of G = SU(N).
- Consider

$$Z_k^{\mathrm{phys}}(M,L,R) = \int_{\mathcal{A}_P/\mathcal{G}_P} \prod_i \mathrm{tr}(R_i(\mathsf{hol}_A(L_i))) \exp(2\pi i k \, \mathsf{CS}(A)) \mathcal{D} A.$$

• Again, there is a corresponding mathematical invariant $Z_k(M, L, R)$, when components of L are labelled by representations R_i .

Mapping tori with links

- Assume that M contains a framed link L, and choose for every component L_i of L a finite dimensional representation R_i of G = SU(N).
- Consider

$$Z_k^{\mathrm{phys}}(M,L,R) = \int_{\mathcal{A}_P/\mathcal{G}_P} \prod_i \mathrm{tr}(R_i(\mathsf{hol}_A(L_i))) \exp(2\pi i k \, \mathsf{CS}(A)) \mathcal{D} A.$$

• Again, there is a corresponding mathematical invariant $Z_k(M, L, R)$, when components of L are labelled by representations R_i .

Thanks ...

... for listening!