Introduction and motivation	TQFTs and quantum representations	Dehn twists	Results and conjectures

Witten-Reshetikhin-Turaev invariants of mapping tori and their asymptotics Winter School on Mathematical Physics, Les Houches 2012

Søren Fuglede Jørgensen Joint with Jørgen Ellegaard Andersen

QGM, Aarhus University

February 1, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction and motivation ●00	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- Define the Chern–Simons functional CS : $\mathcal{A}
 ightarrow \mathbb{R}$ by

$$\mathsf{CS}(A) = \frac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation ●00	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = \frac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation •00	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) - CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation ●00	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $CS(g^*A) - CS(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$$

Introduction and motivation 000	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
The Chern–Simo	ons partition function		

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Witten '89: This defines a topological invariant of closed 3-manifolds.

Main question

What does $\int_{\mathcal{A}/\mathcal{G}} \mathcal{D}A$ mean?

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
The Chern-Sim	one partition function	,	

• Let *k* ∈ ℕ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Witten '89: This defines a topological invariant of closed 3-manifolds.

What does $\int_{\mathcal{A}/\mathcal{G}} \mathcal{D}\mathcal{A}$ mean

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
The Chern-Sim	one partition function	,	

• Let *k* ∈ ℕ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Witten '89: This defines a topological invariant of closed 3-manifolds.

Main question

What does $\int_{\mathcal{A}/\mathcal{G}} \mathcal{D}A$ mean?

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
A possible answ	ver		

Theorem (Reshetikhin–Turaev, et al.)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum G-invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Goal of this talk

Understand $Z_k(M)$ in the case where M is a mapping torus.

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
A nossible answ	iar		

<u>Theorem (Reshetikhin–</u>Turaev, et al.)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum G-invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

Goal of this talk

Understand $Z_k(M)$ in the case where M is a mapping torus.

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
A nossible answ	iar		

Theorem (Reshetikhin–Turaev, et al.)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum G-invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Conjecture

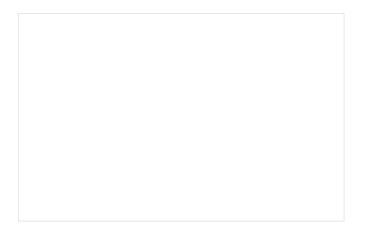
For a closed oriented 3-manifold M,

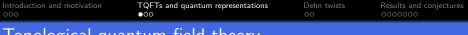
$$Z_k^{\rm phys}(M)=Z_k(M).$$

Goal of this talk

Understand $Z_k(M)$ in the case where M is a mapping torus.

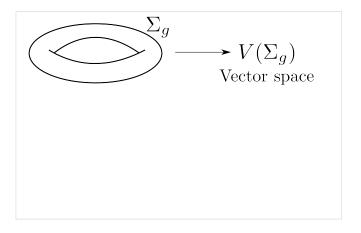
Introduction and motivation	TQFTs and quantum representations ●00	Dehn twists 00	Results and conjectures
Topological qua	ntum field theory		



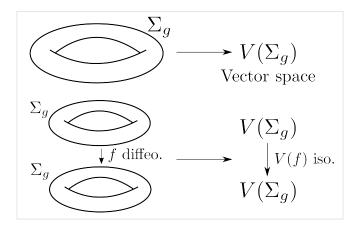


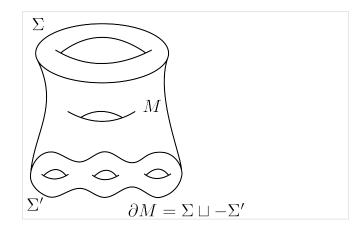
Topological quantum field theory

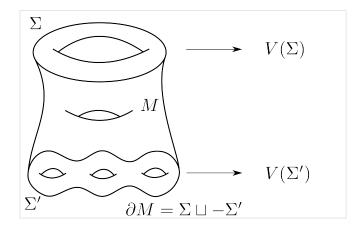
Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :



Introduction and motivation	TQFTs and quantum representations ●00	Dehn twists 00	Results and conjectures
Topological quai	ntum field theory		

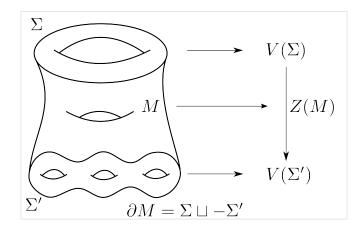






▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Introduction and motivation	TQFTs and quantum representations ●00	Dehn twists 00	Results and conjectures
Topological quai	ntum field theory		



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction and motivation	TQFTs and quantum representations 0●0	Dehn twists 00	Results and conjectures
<u> </u>	1		

Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi : \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$\begin{split} \mathcal{M}_{\varphi} &= \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1] \\ \mathcal{T}_{\varphi} &= \Sigma \times [0, 1]/((x, 0) \sim (\varphi(x), 1)) \end{split}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k: MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goa

Understand $\rho_k(f)$ for $f \in MCG(\Sigma)$.

Introduction and motivation	TQFTs and quantum representations ○●○	Dehn twists 00	Results and conjectures
Quantum repre	sentations		

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} &\mathcal{M}_arphi = \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ &\mathcal{T}_arphi = \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)). \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k: MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goa

Understand $\rho_k(f)$ for $f \in MCG(\Sigma)$.

Introduction and motivation	TQFTs and quantum representations ○●○	Dehn twists 00	Results and conjectures
Quantum repre	sentations		

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} \mathcal{M}_arphi &= \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ \mathcal{T}_arphi &= \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)) \end{aligned}$$

Then $Z_k(M_{\varphi}) : V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k : MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goa

Understand $\rho_k(f)$ for $f \in MCG(\Sigma)$

Introduction and motivation	TQFTs and quantum representations ○●○	Dehn twists 00	Results and conjectures
Quantum repre	sentations		

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} \mathcal{M}_arphi &= \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ \mathcal{T}_arphi &= \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)) \end{aligned}$$

Then $Z_k(M_{\varphi}) : V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k : MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goal

Understand $\rho_k(f)$ for $f \in MCG(\Sigma)$.

Introduction and motivation	TQFTs and quantum representations 00●	Dehn twists 00	Results and conjectures
Connections and	huzzwords		

- Using quantum groups and their representations (Reshetikhin–Turaev, ...).
- Knot and skein theory (Blanchet–Masbaum–Habegger–Vogel, ...).

- Geometric quantization of moduli spaces (Hitchin, ...).
- Conformal field theory (Tsuchiya, Ueno, Yamada, ...).

Introduction and motivation	TQFTs and quantum representations 00●	Dehn twists 00	Results and conjectures
Connections and	buzzwords		

- Using quantum groups and their representations (Reshetikhin–Turaev, ...).
- Knot and skein theory (Blanchet–Masbaum–Habegger–Vogel, ...).

- Geometric quantization of moduli spaces (Hitchin, ...).
- Conformal field theory (Tsuchiya, Ueno, Yamada, ...).

Introduction and motivation	TQFTs and quantum representations 00●	Dehn twists 00	Results and conjectures
Connections and	buzzwords		

- Using quantum groups and their representations (Reshetikhin–Turaev, ...).
- Knot and skein theory (Blanchet–Masbaum–Habegger–Vogel, ...).

- Geometric quantization of moduli spaces (Hitchin, ...).
- Conformal field theory (Tsuchiya, Ueno, Yamada, ...).

Introduction and motivation	TQFTs and quantum representations 00●	Dehn twists 00	Results and conjectures
Connections and	buzzwords		

- Using quantum groups and their representations (Reshetikhin–Turaev, ...).
- Knot and skein theory (Blanchet–Masbaum–Habegger–Vogel, ...).

- Geometric quantization of moduli spaces (Hitchin, ...).
- Conformal field theory (Tsuchiya, Ueno, Yamada, ...).

Introduction and motivation	TQFTs and quantum representations 00●	Dehn twists 00	Results and conjectures
Connections and	buzzwords		

- Using quantum groups and their representations (Reshetikhin–Turaev, ...).
- Knot and skein theory (Blanchet–Masbaum–Habegger–Vogel, ...).

- Geometric quantization of moduli spaces (Hitchin, ...).
- Conformal field theory (Tsuchiya, Ueno, Yamada, ...).

Introduction and motivation	TQFTs and quantum representations	Dehn twists ●0	Results and conjectures
A Dehn twist			

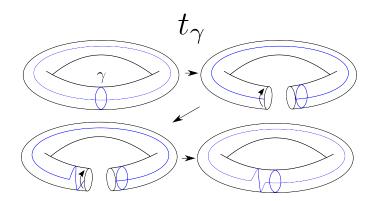


Figure: The Dehn twist t_{γ} about a curve γ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction and motivation	TQFTs and quantum representations	Dehn twists ○●	Results and conjectures
The Dehn–Licko	orish theorem		

Theorem (Dehn-Lickorish)

The mapping class group $MCG(\Sigma)$ is generated by a certain finite set of Dehn twists about curves in Σ .

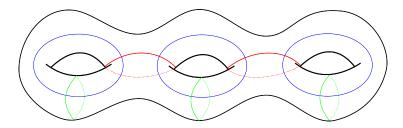


Figure: The Dehn-Lickorish generators in a genus 3 surface.

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures ●000000
A first example			

Let
$$f = id \in MCG(\Sigma_g)$$
 and $G = SU(2)$. Then

$$egin{aligned} Z_k(\mathcal{T}_{\mathsf{id}}) &= Z_k(\Sigma_g imes S^1) = \mathsf{tr}\,
ho_k(\mathsf{id}) = \dim V_k(\Sigma_g) \ &= \left(rac{k+2}{2}
ight)^{g-1} \sum_{i=1}^{k+1} \left(\sin^2 rac{j\pi}{k+2}
ight)^{1-g} \in \mathbb{N}. \end{aligned}$$

This is the Verlinde formula. For example,

dim
$$V_k(S^2) = 1$$
,
dim $V_k(S^1 \times S^1) = k + 1$,
dim $V_k(\Sigma_2) = \frac{1}{6}(k+1)(k+2)(k+3)$.

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures ●000000
A first example			

Let
$$f = id \in MCG(\Sigma_g)$$
 and $G = SU(2)$. Then

$$egin{aligned} Z_k(\mathcal{T}_{\mathsf{id}}) &= Z_k(\Sigma_{\mathscr{G}} imes S^1) = \mathsf{tr} \,
ho_k(\mathsf{id}) = \dim V_k(\Sigma_{\mathscr{G}}) \ &= \left(rac{k+2}{2}
ight)^{\mathscr{g}-1} \sum_{j=1}^{k+1} \left(\sin^2 rac{j\pi}{k+2}
ight)^{1-\mathscr{g}} \in \mathbb{N}. \end{aligned}$$

This is the Verlinde formula. For example,

$$\dim V_k(S^2) = 1,$$

 $\dim V_k(S^1 imes S^1) = k+1,$
 $\dim V_k(\Sigma_2) = rac{1}{6}(k+1)(k+2)(k+3).$

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 0●00000
A second exam	nle		

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

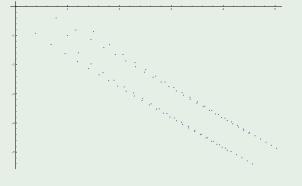


Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100 and G = SU(2).

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures ○●○○○○○	
A second example				

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

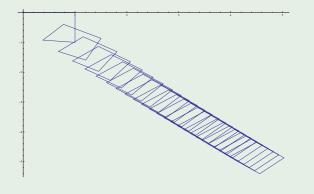


Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100 and G = SU(2).

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures ○●○○○○○	
A second example				

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

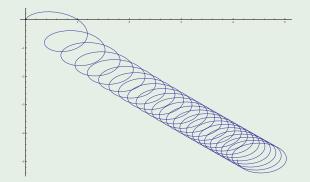


Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100 and G = SU(2).

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Asymptotic exr	ansion conjecture		

Recall that the partition function looked like

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a'_j \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2} \right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへで

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Asymptotic exp	ansion coniecture		

Recall that the partition function looked like

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a'_j \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2}\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへで

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Asymptotic exp	ansion coniecture		

Recall that the partition function looked like

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

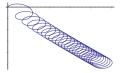
Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

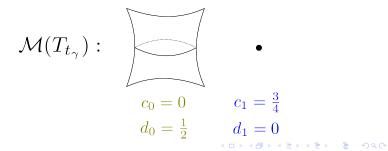
There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a'_j \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2} \right)$$

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
The example re	visited		



$$Z_{k-2}(T_{t_{\gamma}}) = e^{\frac{\pi i}{2k}} \left(\sqrt{k/2} e^{-\pi i/4} e^{2\pi i k 0} - \frac{e^{2\pi i k 3/4}}{2} - \frac{1}{2} \right).$$



Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures
Theorems			

Theorem (Jeffrey, '92)

Let G = SU(2). The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2,\mathbb{Z})$ with |tr(f)| > 2.

Theorem (Andersen, FJ)

```
Let G = SU(2). The AEC holds for T_f, where f \in MCG(S^1 \times S^1) \cong SL(2,\mathbb{Z}) has trace |tr(f)| \leq 2.
```

Theorem (Andersen '95)

Let G = SU(N). The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order.

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 0000●00
Theorems			

Theorem (Jeffrey, '92)

Let G = SU(2). The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ with |tr(f)| > 2.

Theorem (Andersen, FJ)

Let
$$G = SU(2)$$
. The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ has trace $|tr(f)| \le 2$.

Theorem (Andersen '95)

Let G = SU(N). The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order.

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 0000●00
Theorems			

Theorem (Jeffrey, '92)

Let G = SU(2). The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ with |tr(f)| > 2.

Theorem (Andersen, FJ)

Let
$$G = SU(2)$$
. The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ has trace $|tr(f)| \le 2$.

Theorem (Andersen '95)

Let G = SU(N). The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order.

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 00000●0
Pretty pictures			

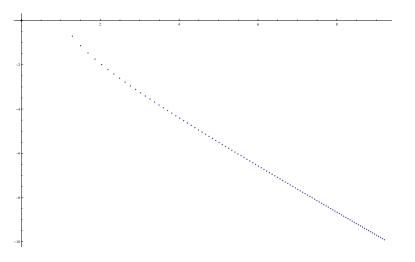


Figure: Plots of $Z_k(T_{t^m_{\gamma}})$ for g = 1, m = 2, G = SU(2).

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 00000●0
Pretty pictures			

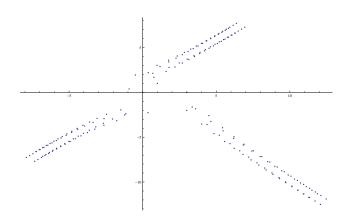


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 3, G = SU(2).

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 00000●0
D			

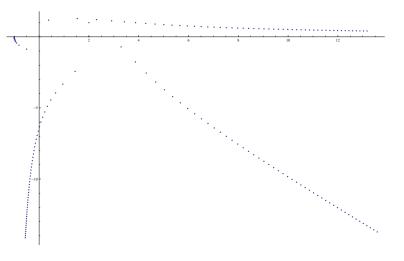


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 4, G = SU(2).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● のへで

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures	
Pretty pictures				

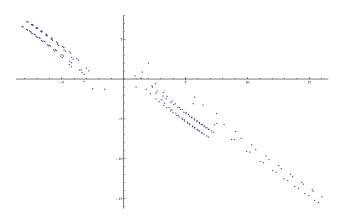


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 5, G = SU(2).

(a)

æ

Introduction and motivation	TQFTs and quantum representations	00	Results and conjectures 00000€0
Dratty nictures			

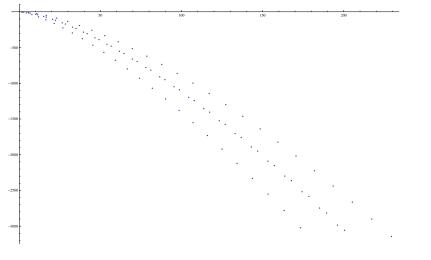


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 2, m = 1, G = SU(2).

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures ○○○○○●○

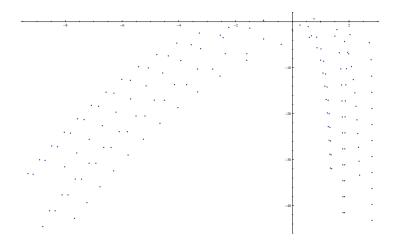


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 1, G = SU(3).

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 00000€0

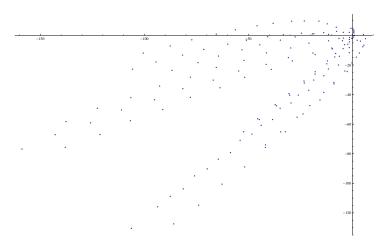


Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 1, G = SU(4).

(a)

æ

Introduction and motivation	TQFTs and quantum representations	Dehn twists 00	Results and conjectures 000000●
Thanks			

... for listening!