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Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.

Let A be the space of connections in G x M — M, and let G
be the group of gauge transformations.

Define the Chern-Simons functional CS : A — R by
CS(A) = 1/ (AN A+ 2ANANA)
82 Iy 3 '

For g € G, we have CS(g*A) — CS(A) € Z, and we can
consider

CS: A/G = R/Z
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The Chern=Simons partition function

o Let k € N (called the level) and define the Chern-Simons
partition function

ZPM (M) = /,4 p 2"k S(DA € C.

Witten '89: This defines a topological invariant of closed
3-manifolds.

Main question

What does [, ,; DA mean?
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One can construct a topological invariant Z) of 3-manifolds, called
the quantum G-invariant, which behaves under gluing (or surgery)
the way Z) hys s supposed to do.

| A

Conjecture

For a closed oriented 3-manifold M,

ZP (M) = Zi(M).

N

Goal of this talk
Understand Zx(M) in the case where M is a mapping torus.
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Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z is part of a
2 + 1-dimensional topological quantum field theory (Zx, Vi):

by
V(%)
Z(M)
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Quantum representations

The data (Zk, Vi) satisfies a number of axioms.

Example

Let ¢ : ¥ — ¥ be a diffeomorphism and consider the mapping
cylinder and the mapping torus

M, =% x[0,3]U, & x [3,1]
T, =X x[0,1]/((x,0) ~ (#(x),1)).

Then Z(M,) : Vi(X) — Vi(X) depend on ¢ only up to isotopy.
Define the quantum representations py : MCG(X) — Aut( V(X))
by pi([¢]) = Zk(M,,). Furthermore, Z,(M,) = Vi(¢) and
Zi(Ty) = tr Zk(My) = tr pi([e]).

N

Revised goal
Understand py(f) for f € MCG(X).
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Connections and buzzwords

The quantum representations and invariants have been constructed
from a number of different perspectives.

@ Using quantum groups and their representations
(Reshetikhin—Turaeyv, ...).

@ Knot and skein theory (Blanchet-Masbaum—Habegger—Vogel,

).

o Geometric quantization of moduli spaces (Hitchin, ...).
e Conformal field theory (Tsuchiya, Ueno, Yamada, ...).
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A Dehn twist

S
G

Figure: The Dehn twist t, about a curve 7.
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The Dehn—Lickorish theorem

Theorem (Dehn—Lickorish)

The mapping class group MCG(X) is generated by a certain finite
set of Dehn twists about curves in ¥.

Figure: The Dehn—Lickorish generators in a genus 3 surface.
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A first example
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A first example

Let f =id € MCG(X,) and G = SU(2). Then

Zi(Tig) = Zk(Xg x SY) = tr pi(id) = dim Vi (Z,)
k+2>g1k§< o T )1‘g
=\ 75 sin” ———~ € N.
( 2 = k42
This is the Verlinde formula. For example,
dim Vi (S?) = 1,
dim V, (S x S1) = k +1,

dim Vi () = é(k +1)(k +2)(k +3).




Results and conjectures
0®00000

A second example

Let v in S! x S! be non-trivial, and let t, be the Dehn twist about
7. The SU(2)-invariants Zi(T,) behave as follows:

Figure: Plots of Z4(T,) € C for k =1,...,100 and G = SU(2).
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A second example

Example

Let v in S! x S! be non-trivial, and let t, be the Dehn twist about
7. The SU(2)-invariants Z,( T, ) behave as follows:

Figure: Plots of Zx(Ty,) € C for k =1,...,100 and G = SU(2).
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Asymptotic expansion conjecture

Recall that the partition function looked like
ZPS (M) = / 2Tk CS(A)pA.
A/G

Let M be the moduli space of flat connections on a 3-manifold M,
and let 0 = ¢, c1, ..., c, be the values of CS on M.

Conjecture (The asymptotic expansion conjecture)

There exist d; € 37, bj € C, al € C for j=10,...,n, | € Ng such
that Zy(M) has the asymptotic expansion

Zk(M) ~ k300 Z e27TIij kd (1 + Z 3! k //2)

Jj=0 /=1
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The example revisited

2

i ) ) 2mik3/4 1
Zk—2(thy) = €2 <\/ k/2ei7“/4e27ﬂk0 — eT — > .

O W



Results and conjectures
0000®00

Theorems

Theorem (Jeffrey, '92)

Let G =SU(2). The AEC holds for every mapping torus T¢ of a
torus diffeomorphism f € MCG(S* x S1) = SL(2,Z) with
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Theorems

Theorem (Jeffrey, '92)

Let G =SU(2). The AEC holds for every mapping torus T¢ of a
torus diffeomorphism f € MCG(S* x S1) = SL(2,Z) with

[tr(f)| > 2.

\

Theorem (Andersen, FJ)

Let G = SU(2). The AEC holds for T, where
f € MCG(S* x St) = SL(2,Z) has trace |tr(f)| < 2.

Theorem (Andersen '95)

Let G = SU(N). The AEC holds for f € MCG(X,), g > 2, when f
is finite order.
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Figure: Plots of Z(Tin) for g =1,m =3, G = SU(2).
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Pretty pictures

Figure: Plots of Z(Tir) for g =1,m =4, G = SU(2).
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Pretty pictures

Figure: Plots of Zy(Tir) for g =1,m =5, G = SU(2).
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Figure: Plots of Z(Tin) for g =2,m =1, G = SU(2).



Results and conjectures
00000e0

Pretty pictures

Figure: Plots of Zk(Ttg,) forg=1m=1, G=SU(3).
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Pretty pictures

Figure: Plots of Z(Tir) for g =1,m =1, G = SU(4).
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Thanks ...

... for listening!
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