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Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A ∼= Ω1(M, g) be the space of connections in
G ×M → M, and let G ∼= C∞(M,G) be the group of gauge
transformations acting on A.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z



Background TQFTs and quantum representations Quantum representations and dynamics

Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A ∼= Ω1(M, g) be the space of connections in
G ×M → M, and let G ∼= C∞(M,G) be the group of gauge
transformations acting on A.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z



Background TQFTs and quantum representations Quantum representations and dynamics

Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A ∼= Ω1(M, g) be the space of connections in
G ×M → M, and let G ∼= C∞(M,G) be the group of gauge
transformations acting on A.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z



Background TQFTs and quantum representations Quantum representations and dynamics

Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A ∼= Ω1(M, g) be the space of connections in
G ×M → M, and let G ∼= C∞(M,G) be the group of gauge
transformations acting on A.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z



Background TQFTs and quantum representations Quantum representations and dynamics

The Chern–Simons partition function

Let k ∈ N (called the level) and define the Chern–Simons
partition function

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA ∈ C.

Assume that M contains a framed oriented link L, and choose
for every component Li of L a finite dimensional
representation Ri of G = SU(N). Set

Zphys
k (M, L,R) =

∫
A/G

∏
i
tr(Ri (holA(Li )))e2πik CS(A)DA.

Witten ’89: This extends to a TQFT.
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A possible construction

Theorem (Reshetikhin–Turaev, 1991)
One can construct a topological invariant Zk of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Zphys

k is supposed to do.

Source of inspiration
For a closed oriented 3-manifold M,

Zphys
k (M) = Zk(M).
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Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zk is part of a
2 + 1-dimensional topological quantum field theory (Zk ,Vk):
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Young diagrams with < N rows

and <k           +1 columns 
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homeo. iso.
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Quantum representations

The data (Z ,V ) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a diffeomorphism and consider the mapping
cylinder

Cϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Then Z (Cϕ) : V (Σ)→ V (Σ) depends on ϕ only up to isotopy.
Define the (projective) quantum representations

ρ : MCG(Σ)→ PGL(V (Σ))

by ρ([ϕ]) = Z (Cϕ). Furthermore, Z (Cϕ) = V (ϕ).
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Constructing quantum representations

Several equivalent approaches to the construction of quantum
SU(N)-representations (VN,k , ρN,k) exist:

Categorical/combinatorial through modular functors: obtained
from representation theory of Uq(slN) (with q = exp( 2πi

k+N )),
the skein theory of the Kauffman bracket/HOMFLYPT
polynomial ...
Conformal field theory: the monodromy of the WZW
connection in the sheaf of conformal blocks.
Geometric quantization of moduli spaces of flat
connections/bundles: the monodromy of the Hitchin
connection (no marked points).

These approaches are equivalent: Laszlo, Andersen–Ueno, ...
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A simple example

Example
Let f = id ∈ MCG(Σg ), G = SU(2). Then

tr ρ2,k(id) = dimV2,k(Σg )

=

(k + 2
2

)g−1 k+1∑
j=1

(
sin2 jπ

k + 2

)1−g
∈ N.

This is the Verlinde formula. For example,

dimVk(Σ0) = 1,
dimVk(Σ1) = k + 1,

dimVk(Σ2) =
1
6(k + 1)(k + 2)(k + 3).
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The genus 0 case

Let Σ = C ∪ {∞} be a genus zero surface with marked points
{1, . . . , n,∞} labelled by Young diagrams { , . . . , , λ?},
where λ has at most 2 rows (at most 1 if N = 2), and ?
denotes the dual diagram.
Let V λ

N,k denote the vector space associated by any of the
modular functors to Σ.
The MCG of Σ (preserving marked points + labels) naturally
contains Bn.
Let ρλN,k : Bn → GL(V λ

N,k) denote the restriction of the
quantum representation to this Bn.

Theorem
For k > n, ρλN,k is equivalent to the diagram representation ηn,d

A
from Jens Kristian’s talk with q = A4 = exp(2πi/(N + k)), d ↔ λ.
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Isotopy invariant dynamics
What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)
Let Σ be a surface (possibly punctured but with no boundary). A
mapping class ϕ ∈ MCG(Σ) is either

finite order,
infinite order but has a power preserving the homotopy class
of an essential simple closed curve (ϕ is reducible), or
pseudo-Anosov: there are transverse measured singular
foliations (F s , µs), (Fu, µu) of Σ, x > 1 and a diffeo. f ,
[f ] = ϕ, s.t.

f (F s , µs) = (F s , x−1µs), f (Fu, µu) = (Fu, xµu).

Here, x is called the stretch factor of ϕ.

For surfaces with boundary, replace boundaries by punctures.
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Visualizing pseudo-Anosov braids

Source: Mark A. Stremler

Left: Initial position.
Center: Stirring by finite order braid.
Right: Stirring by pseudo-Anosov braid.
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The NT classification vs. quantum reps

Are the quantum reps ρλN,k sensitive to the trichotomy?

Conjecture (Andersen–Masbaum–Ueno ’06)
Consider a general genus g surface Σ with n marked points.
Assume 2g + n > 2, and let ϕ ∈ MCG(Σ) be a pseudo-Anosov.
Then there exists k0 s.t. ρN,k(ϕ) has infinite order for k > k0.

Question (Andersen–Masbaum–Ueno ’06)
Do ρN,k determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.
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Generalizing AMU

Theorem (Egsgaard, SFJ)
The AMU conjecture holds true for all ρλN,k for homological
pseudo-Anosovs ϕ ∈ Bn: those with only odd-pronged singularities
in the marked points and even-pronged singularities in the other
interior points. Furthermore, stretch factors may be determined
from k-limits of eigenvalues of ρλN,k for these pseudo-Anosovs.

Main steps in proof

Recall that ρλN,k ∼= ηn,d
A for A4 = q = exp(2πi/(k + N)).

The order of ηn,d
A (ϕ) at a primitive root of unity depends only

on the order of the root.
It suffices to show that the spectral radius of ηn,d

A (ϕ) is
greater than 1 for an A ∈ U(1): Every z ∈ U(1) may be
approximated by primitive n’th roots of unity zn (Iwaniec).
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approximated by primitive n’th roots of unity zn (Iwaniec).
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Generalizing AMU (continued)

Proof (continued).

Main result: ηn,d
exp(−πi/4) is essentially an exterior power of the

lifted action on homology of the ramified double cover.
The pseudo-Anosov ϕ lifts to a pseudo-Anosov ϕ̃ on the
covering surface with the same stretch factor.
The foliations of ϕ̃ have consistently orientable leaves. The
stretch factor of a pseudo-Anosov with this property is the
spectral radius of its action on homology.
For exterior powers of homology, we need to ensure that
eigenvectors lie in the image of morphism of representations.
For odd n this is possible by the explicit description of the
representation.
For even n, use induction on d and a known decomposition
ηn+1,d+1

A |Bn
∼= ηn,d

A ⊕ ηn,d+2
A .
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Generalizing AMU (continued)
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Generalizing AMU (continued)

Proof (continued).
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Generalizing AMU (continued)

Proof (continued).

Main result: ηn,d
exp(−πi/4) is essentially an exterior power of the

lifted action on homology of the ramified double cover.
The pseudo-Anosov ϕ lifts to a pseudo-Anosov ϕ̃ on the
covering surface with the same stretch factor.
The foliations of ϕ̃ have consistently orientable leaves. The
stretch factor of a pseudo-Anosov with this property is the
spectral radius of its action on homology.
For exterior powers of homology, we need to ensure that
eigenvectors lie in the image of morphism of representations.
For odd n this is possible by the explicit description of the
representation.
For even n, use induction on d and a known decomposition
ηn+1,d+1

A |Bn
∼= ηn,d

A ⊕ ηn,d+2
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Examples: Plots of spectral radii
For ϕ ∈ Bn, consider the functions srd (ϕ) : [0, 1]→ R+

srd (ϕ)(x) = spectral radius of ηn,d
A (ϕ) at q = A4 = exp(πix).
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The pseudo-Anosov σ1σ
−1
2 ∈ B3 (dashed line = stretch factor).
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Examples: Plots of spectral radii
For ϕ ∈ Bn, consider the functions srd (ϕ) : [0, 1]→ R+
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A pseudo-Anosov in B6 acting trivially on homology of double
cover (Brown).
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Examples: Plots of spectral radii
For ϕ ∈ Bn, consider the functions srd (ϕ) : [0, 1]→ R+

srd (ϕ)(x) = spectral radius of ηn,d
A (ϕ) at q = A4 = exp(πix).
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Small stretch factor, σ1σ2σ
−1
3 ∈ B4

(non-homological, Lanneau–Thiffeault).
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Examples: Plots of spectral radii
For ϕ ∈ Bn, consider the functions srd (ϕ) : [0, 1]→ R+

srd (ϕ)(x) = spectral radius of ηn,d
A (ϕ) at q = A4 = exp(πix).
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Concrete levels

We can read off at which levels, orders become infinite.
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Plot for d = 0, σ1σ2σ
−1
3 ∈ B6; bold line is for SU(2) level k = 8.
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Concrete levels

Theorem (Masbaum, ’99)
Quantum SU(2)-representations have elements of infinite order for
all levels k, except perhaps for k = 1, 2, 4, 8.

Theorem (Laszlo–Pauly–Sorger, ’13)
The quantum SU(2)-representations of the sphere with four
marked points has finite image for k = 1, 2, 4, 8.

Proposition
Quantum representations have infinite order elements at level
k = 8 as well.
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Examples of homological pseudo-Anosovs

Example
In B3, all pseudo-Anosovs are homological. This way, we recover
the result of Andersen–Masbaum–Ueno for the sphere with four
marked points.

Example (Penner)
Assume n is even, and let σ1, . . . , σn−1 be the standard
generators of Bn.
Take any word ϕ in the generators where the signs of powers
correspond to the parity of the index.
For example: n = 6, ϕ = σ2

1σ
−4
2 σ5

3σ
−10
4 σ60

5 .
Suppose that each generator appears at least once in the
word. Then ϕ is a homological pseudo-Anosov.



Background TQFTs and quantum representations Quantum representations and dynamics

Examples of homological pseudo-Anosovs

Example
In B3, all pseudo-Anosovs are homological. This way, we recover
the result of Andersen–Masbaum–Ueno for the sphere with four
marked points.

Example (Penner)
Assume n is even, and let σ1, . . . , σn−1 be the standard
generators of Bn.
Take any word ϕ in the generators where the signs of powers
correspond to the parity of the index.
For example: n = 6, ϕ = σ2

1σ
−4
2 σ5

3σ
−10
4 σ60

5 .
Suppose that each generator appears at least once in the
word. Then ϕ is a homological pseudo-Anosov.



Background TQFTs and quantum representations Quantum representations and dynamics

Examples of homological pseudo-Anosovs

Example
In B3, all pseudo-Anosovs are homological. This way, we recover
the result of Andersen–Masbaum–Ueno for the sphere with four
marked points.

Example (Penner)
Assume n is even, and let σ1, . . . , σn−1 be the standard
generators of Bn.
Take any word ϕ in the generators where the signs of powers
correspond to the parity of the index.
For example: n = 6, ϕ = σ2

1σ
−4
2 σ5

3σ
−10
4 σ60

5 .
Suppose that each generator appears at least once in the
word. Then ϕ is a homological pseudo-Anosov.



Background TQFTs and quantum representations Quantum representations and dynamics

Examples of homological pseudo-Anosovs

Example
In B3, all pseudo-Anosovs are homological. This way, we recover
the result of Andersen–Masbaum–Ueno for the sphere with four
marked points.

Example (Penner)
Assume n is even, and let σ1, . . . , σn−1 be the standard
generators of Bn.
Take any word ϕ in the generators where the signs of powers
correspond to the parity of the index.
For example: n = 6, ϕ = σ2

1σ
−4
2 σ5

3σ
−10
4 σ60

5 .
Suppose that each generator appears at least once in the
word. Then ϕ is a homological pseudo-Anosov.



Background TQFTs and quantum representations Quantum representations and dynamics

Examples of homological pseudo-Anosovs

Example
In B3, all pseudo-Anosovs are homological. This way, we recover
the result of Andersen–Masbaum–Ueno for the sphere with four
marked points.

Example (Penner)
Assume n is even, and let σ1, . . . , σn−1 be the standard
generators of Bn.
Take any word ϕ in the generators where the signs of powers
correspond to the parity of the index.
For example: n = 6, ϕ = σ2

1σ
−4
2 σ5

3σ
−10
4 σ60

5 .
Suppose that each generator appears at least once in the
word. Then ϕ is a homological pseudo-Anosov.



Background TQFTs and quantum representations Quantum representations and dynamics

Thanks ...

... for listening!
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