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o Let G =SU(N), and let M be an (oriented connected framed)
closed 3-manifold.

o Let A= QY(M,g) be the space of connections in
G x M — M, and let G = C>*(M, G) be the group of gauge
transformations acting on A.

o Define the Chern-Simons functional CS: A — R by

1 2
CS(A) = S?/Mtr(A/\ dA+ZANANA),
o For g € G, we have CS(g*A) — CS(A) € Z, and we can

consider

CS: A/G—R/Z



Background
oeo

o Let k € N (called the level) and define the Chern—-Simons
partition function

ZPY(M) = /A . 2"k CS(ADA ¢ C.



Background
oeo

o Let k € N (called the level) and define the Chern—-Simons
partition function

ZPY(M) = /A . 2"k CS(ADA ¢ C.

o Assume that M contains a framed oriented link /., and choose
for every component /; of | a finite dimensional
representation R; of G = SU(N). Set

ZP™(M, L, R) / Htr (hola(1)))e?™* SADA,
A/G



Background
oeo

o Let k € N (called the level) and define the Chern—-Simons
partition function

ZP(M) = /A . 2"k CS(A)DA € C.

o Assume that M contains a framed oriented link /., and choose
for every component /; of | a finite dimensional
representation R; of G = SU(N). Set

ZPN(M, L, R) = / Htr (hola(1)))e?™* SADA,
A/G

Witten '89: This extends to a TQFT.
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Theorem (Reshetikhin—Turaev, 1991)

One can construct a topological invariant Z; of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Z hys s supposed to do.

Source of inspiration

For a closed oriented 3-manifold M,

ZP (M) = Zi(M).
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2 + 1-dimensional topological quantum field theory (Zx, Vi):

by

< > —— V(D)

‘ i Vector space

Young diagrams with <N rows
and <k+1 columns
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Reshetikhin and Turaev proved that the invariant Z is part of a
2 + 1-dimensional topological quantum field theory (Zx, Vi):

>
<> —— V()
s i Vector space
b
= V()
5 y/homeo. — > l V(f) iso.

> V(%

N—
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Reshetikhin and Turaev proved that the invariant Z is part of a
2 + 1-dimensional topological quantum field theory (Zx, Vi):

>
V(%)
Z(M)
o
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The data (Z, V) satisfies a number of axioms.

Example

Let ¢ : ¥ — ¥ be a diffeomorphism and consider the mapping
cylinder

Co =X x[0,4]U, % x [3,1]

Then Z(C,) : V(X) — V(X) depends on ¢ only up to isotopy.
Define the (projective) quantum representations

p: MCG(E) = PGL(V(X))

by p([¢]) = Z(C,). Furthermore, Z(C,) = V(¢).
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coeo

Several equivalent approaches to the construction of quantum
SU(N)-representations (Vi k, pn.k) exist:

o Categorical /combinatorial through modular functors: ob'gained
from representation theory of Uq(sly) (with g = exp(ﬁ’r’,’\,)),
the skein theory of the Kauffman bracket/HOMFLYPT
polynomial ...

o Conformal field theory: the monodromy of the WZW
connection in the sheaf of conformal blocks.

o Geometric quantization of moduli spaces of flat
connections/bundles: the monodromy of the Hitchin
connection (no marked points).

These approaches are equivalent: Laszlo, Andersen—Ueno, ...
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Let f = id € MCG(Z,), G = SU(2). Then

trpg’k(id) =dim Vz’k(zg)

k+2\& 1/ L jm \1#
—<2> ;(gn k—|—2) eN.

This is the Verlinde formula. For example,

dim Vk(ZO) = 1,
dim Vk(Zl) =k+ 1,

dim Vi() = é(k +1)(k +2)(k +3).
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o Let ¥ = CU {oo} be a genus zero surface with marked points
{1,...,n,00} labelled by Young diagrams {o,...,0, A*},
where A has at most 2 rows (at most 1 if N =2), and %
denotes the dual diagram.

o Let V,C’k denote the vector space associated by any of the
modular functors to X.

o The MCG of X (preserving marked points + labels) naturally
contains B,,.

o Let p;\\,’k : B, — GL( V,Qk) denote the restriction of the
quantum representation to this By,.

For k > n, p;\\,’ « is equivalent to the diagram representation nf\’d
from Jens Kristian's talk with ¢ = A* = exp(2mi/(N + k)), d > .
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o finite order,
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What dynamical information do mapping classes contain?

Theorem (Nielsen—Thurston)

Let ¥ be a surface (possibly punctured but with no boundary). A
mapping class ¢ € MCG(X) is either
o finite order,

o infinite order but has a power preserving the homotopy class
of an essential simple closed curve (¢ is reducible), or

o pseudo-Anosov: there are transverse measured singular
foliations (F*, u*), (FY, u") of ¥, x > 1 and a diffeo. f,
[f] = ¢, s.t.

F(F*1%) = (F5,x M%), F(FY, ) = (F¥,xpn®).

Here, x is called the stretch factor of .

For surfaces with boundary, replace boundaries by punctures.
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Source: Mark A. Stremler

o Left: Initial position.
o Center: Stirring by finite order braid.
o Right: Stirring by pseudo-Anosov braid.



Quantum representations and dynamics
000®0000000000

Are the quantum reps py, , sensitive to the trichotomy?



Quantum representations and dynamics
000®0000000000

Are the quantum reps pj , sensitive to the trichotomy?

Conjecture (Andersen—Masbaum—Ueno '06)

Consider a general genus g surface ¥~ with n marked points.
Assume 2g +n > 2, and let ¢ € MCG(X) be a pseudo-Anosov.
Then there exists ko s.t. pn k(@) has infinite order for k > k.




Quantum representations and dynamics
000®0000000000

Are the quantum reps pj . sensitive to the trichotomy?

Conjecture (Andersen—Masbaum—Ueno '06)

Consider a general genus g surface ¥ with n marked points.
Assume 2g +n > 2, and let ¢ € MCG(X) be a pseudo-Anosov.
Then there exists ky s.t. pn k(@) has infinite order for k > ko.

Question (Andersen—Masbaum—-Ueno '06)

Do pp « determine stretch factors of pseudo-Anosovs?




Quantum representations and dynamics
000®0000000000

Are the quantum reps pj . sensitive to the trichotomy?

Conjecture (Andersen—Masbaum—Ueno '06)

Consider a general genus g surface ¥ with n marked points.
Assume 2g +n > 2, and let ¢ € MCG(X) be a pseudo-Anosov.
Then there exists ky s.t. pn k(@) has infinite order for k > ko.

Question (Andersen—Masbaum—-Ueno '06)

Do pp « determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.
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Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all pﬁ,y « for homological
pseudo-Anosovs ¢ € B, : those with only odd-pronged singularities
in the marked points and even-pronged singularities in the other
interior points. Furthermore, stretch factors may be determined
from k-limits of eigenvalues of P7\v, « for these pseudo-Anosovs.

| A\

Main steps in proof

o Recall that py , = nxe for A* = q = exp(27i/(k + N)).
o The order of nf\’d(cp) at a primitive root of unity depends only
on the order of the root.

o It suffices to show that the spectral radius of n/’Z\’d(go) is
greater than 1 for an A € U(1): Every z € U(1) may be
approximated by primitive n'th roots of unity z, (Iwaniec).
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Proof (continued).

o Main result: nexp( i /4) is essentially an exterior power of the
lifted action on homology of the ramified double cover.

@ The pseudo-Anosov ¢ lifts to a pseudo-Anosov ¢ on the
covering surface with the same stretch factor.

o The foliations of ¢ have consistently orientable leaves. The
stretch factor of a pseudo-Anosov with this property is the
spectral radius of its action on homology.

o For exterior powers of homology, we need to ensure that
eigenvectors lie in the image of morphism of representations.

o For odd n this is possible by the explicit description of the
representation.

o For even n, use induction on d and a known decomposition

n+1,d+1 n d+2
a |8, e Na
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For ¢ € B, consider the functions srq(y) : [0,1] — R4
sry(p)(x) = spectral radius of nf\’d(go) at g = A* = exp(mix).

2,618|

w1

1 1 3
! ‘ 4 1

The pseudo-Anosov o105 ' € B (dashed line = stretch factor).
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For ¢ € B, consider the functions srq(y) : [0,1] — R4
sry(p)(x) = spectral radius of nf\’d(go) at g = A* = exp(mix).

10001

8001

d
mo
|2
o4

6001

4001

2001

0 n = I 1

A pseudo-Anosov in Bg acting trivially on homology of double
cover (Brown).
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For ¢ € B, consider the functions srq(y) : [0,1] — R4
sry(p)(x) = spectral radius of nf\’d(go) at g = A* = exp(mix).

D220
of
d
=m0
1 o2

1 1 3
4 2 4 1

Small stretch factor, o10203 " € By
(non-homological, Lanneau—Thiffeault).
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For ¢ € B, consider the functions srq(y) : [0,1] — R4
sry(p)(x) = spectral radius of nf\’d(go) at g = A* = exp(mix).

1,466/ ”””””””””””

1 1 3
4 2 4 1

Small stretch factor, 052(01 . --06)2 € By
(non-homological).
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We can read off at which levels, orders become infinite.

Choroo
Semmmo

10
@11
o 12

Plot for d =0, 010203_1 € Bg; bold line is for SU(2) level k = 8.
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Theorem (Masbaum, '99)

Quantum SU(2)-representations have elements of infinite order for
all levels k, except perhaps for k =1,2,4,8.

Theorem (Laszlo-Pauly—Sorger, '13)

The quantum SU(2)-representations of the sphere with four
marked points has finite image for k = 1,2,4,8.




Quantum representations and dynamics
00000000000e00

Concrete levels

Theorem (Masbaum, '99)

Quantum SU(2)-representations have elements of infinite order for
all levels k, except perhaps for k =1,2,4,8.

Theorem (Laszlo-Pauly—Sorger, '13)

The quantum SU(2)-representations of the sphere with four
marked points has finite image for k = 1,2,4,8.

Proposition

Quantum representations have infinite order elements at level
k =8 as well.
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In Bs, all pseudo-Anosovs are homological. This way, we recover
the result of Andersen—Masbaum—Ueno for the sphere with four
marked points.

Example (Penner)

@ Assume n is even, and let 01,...,0,_1 be the standard
generators of B,.

@ Take any word ¢ in the generators where the signs of powers
correspond to the parity of the index.

o For example: n =6, o = 6205 *050, 0580,
@ Suppose that each generator appears at least once in the
word. Then ¢ is a homological pseudo-Anosov.
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... for listening!



	Background
	Motivation

	TQFTs and quantum representations
	TQFTs and quantum representations

	Quantum representations and dynamics
	Quantum representations and dynamics


