The AMU conjecture for punctured spheres

Discussion Meeting on Analytic and Algebraic Geometry Related to Bundles Kerala School of Mathematics

> Søren Fuglede Jørgensen joint work with Jens Kristian Egsgaard arXiv:1402.6059

> > Uppsala University

March 24th, 2014

Notation

- ► Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(\mathcal{M}, \mathfrak{g})$ be the space of connections in $G \times \mathcal{M} \to \mathcal{M}$, and let $\mathcal{G} \cong C^{\infty}(\mathcal{M}, G)$ be the group of gauge transformations acting on \mathcal{A} .
- \blacktriangleright Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

▶ For $g \in G$, we have $\mathsf{CS}(g^*A) - \mathsf{CS}(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$$

A possible construction

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$T_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

➤ Assume that *M* contains a framed oriented link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*). Set

$$Z_k^{ ext{phys}}(M,L,R) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_{\mathcal{A}}(L_i))) e^{2\pi i k \operatorname{CS}(\mathcal{A})} \mathcal{D}\mathcal{A}_k$$

Witten '89: This extends to a TQFT.

The Chern–Simons partition function

7

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Source of inspiration For a closed oriented 3-manifold M,

$$Z_k^{\mathrm{phys}}(M) = Z_k(M)$$

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :

Quantum representations

The data (Z, V) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the mapping cylinder

$$C_{\varphi} = \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1]$$

Then $Z(C_{\varphi}): V(\Sigma) \to V(\Sigma)$ depends on φ only up to isotopy. Define the (projective) quantum representations

$$\rho : \mathsf{MCG}(\Sigma) \to \mathsf{PGL}(V(\Sigma))$$

by
$$\rho([\varphi]) = Z(C_{\varphi})$$
. Furthermore, $Z(C_{\varphi}) = V(\varphi)$.

Constructing quantum representations

Several equivalent approaches to the construction of quantum SU(N)-representations $(V_{N,k}, \rho_{N,k})$ exist:

- Categorical/combinatorial through modular functors: obtained from representation theory of $U_q(\mathfrak{sl}_N)$ (with $q = \exp(\frac{2\pi i}{k+N})$), the skein theory of the Kauffman bracket/HOMFLYPT polynomial ...
- ► Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces of flat connections/bundles: the monodromy of the Hitchin connection (no marked points).

These approaches are equivalent: Laszlo, Andersen-Ueno, ...

The genus 0 case

- Let $\Sigma = \mathbb{C} \cup \{\infty\}$ be a genus zero surface with marked points $\{1, \ldots, n, \infty\}$ labelled by Young diagrams $\{\Box, \ldots, \Box, \lambda^{\star}\}$, where λ has at most 2 rows (at most 1 if N = 2), and \star denotes the dual diagram.
- Let $V_{N,k}^{\lambda}$ denote the vector space associated by any of the modular functors to Σ .
- The MCG of Σ (preserving marked points + labels) naturally contains B_n .
- ► Let $\rho_{N,k}^{\lambda} : B_n \to \operatorname{GL}(V_{N,k}^{\lambda})$ denote the restriction of the quantum representation to this B_n .

Theorem

For k > n, $\rho_{N,k}^{\lambda}$ is equivalent to the diagram representation $\eta_A^{n,d}$ from Jens Kristian's talk with $q = A^4 = \exp(2\pi i/(N+k))$, $d \leftrightarrow \lambda$.

Visualizing pseudo-Anosov braids

Source: Mark A. Stremler

- Left: Initial position.
- Center: Stirring by finite order braid.
- Right: Stirring by pseudo-Anosov braid.

A simple example

tr μ

Example

Let $f = id \in MCG(\Sigma_g)$, G = SU(2). Then

$$\begin{split} p_{2,k}(\mathsf{id}) &= \dim V_{2,k}(\Sigma_g) \\ &= \left(\frac{k+2}{2}\right)^{g-1} \sum_{i=1}^{k+1} \left(\sin^2 \frac{j\pi}{k+2}\right)^{1-g} \in \mathbb{N}. \end{split}$$

This is the Verlinde formula. For example,

$$\begin{split} &\dim V_k(\Sigma_0) = 1, \\ &\dim V_k(\Sigma_1) = k+1, \\ &\dim V_k(\Sigma_2) = \frac{1}{6}(k+1)(k+2)(k+3). \end{split}$$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

Let Σ be a surface (possibly punctured but with no boundary). A mapping class $\varphi \in MCG(\Sigma)$ is either

- finite order,
- infinite order but has a power preserving the homotopy class of an essential simple closed curve (φ is reducible), or
- pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, x > 1 and a diffeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^{s},\mu^{s}) = (\mathcal{F}^{s},x^{-1}\mu^{s}), f(\mathcal{F}^{u},\mu^{u}) = (\mathcal{F}^{u},x\mu^{u})$$

Here, x is called the stretch factor of φ .

For surfaces with boundary, replace boundaries by punctures.

The NT classification vs. quantum reps

Are the quantum reps $\rho_{\textit{N},k}^{\lambda}$ sensitive to the trichotomy?

Conjecture (Andersen-Masbaum-Ueno '06)

Consider a general genus g surface Σ with n marked points. Assume 2g + n > 2, and let $\varphi \in MCG(\Sigma)$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_{N,k}(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do $\rho_{N,k}$ determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.

Generalizing AMU (continued)

Proof (continued).

- Main result: $\eta_{\exp(-\pi i/4)}^{n,d}$ is essentially an exterior power of the lifted action on homology of the ramified double cover.
- ▶ The pseudo-Anosov φ lifts to a pseudo-Anosov $\tilde{\varphi}$ on the covering surface with the same stretch factor.
- The foliations of φ̃ have consistently orientable leaves. The stretch factor of a pseudo-Anosov with this property is the spectral radius of its action on homology.
- ► For exterior powers of homology, we need to ensure that eigenvectors lie in the image of morphism of representations.
- ▶ For odd *n* this is possible by the explicit description of the representation.
- ► For even *n*, use induction on *d* and a known decomposition $\eta_A^{n+1,d+1}|_{B_n} \cong \eta_A^{n,d} \oplus \eta_A^{n,d+2}$.

Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all $\rho_{N,k}^{\lambda}$ for homological pseudo-Anosovs $\varphi \in B_n$: those with only odd-pronged singularities in the marked points and even-pronged singularities in the other interior points. Furthermore, stretch factors may be determined from k-limits of eigenvalues of $\rho_{N,k}^{\lambda}$ for these pseudo-Anosovs.

Main steps in proof

- Recall that $\rho_{N,k}^{\lambda} \cong \eta_A^{n,d}$ for $A^4 = q = \exp(2\pi i/(k+N))$.
- The order of η_A^{n,d}(φ) at a primitive root of unity depends only on the order of the root.
- It suffices to show that the spectral radius of η_A^{n,d}(φ) is greater than 1 for an A ∈ U(1): Every z ∈ U(1) may be approximated by *primitive* n'th roots of unity z_n (Iwaniec).

Examples: Plots of spectral radii

For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi) : [0,1] \to \mathbb{R}_+$

 $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral radius of } \eta_A^{n,d}(\varphi) \text{ at } q = A^4 = \exp(\pi i x).$

The pseudo-Anosov $\sigma_1 \sigma_2^{-1} \in B_3$ (dashed line = stretch factor).

 $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral radius of } \eta_A^{n,d}(\varphi) \text{ at } q = A^4 = \exp(\pi i x).$

Examples: Plots of spectral radii

For $arphi\in B_n$, consider the functions $\mathrm{sr}_d(arphi):[0,1] o\mathbb{R}_+$

Concrete levels

We can read off at which levels, orders become infinite.

Plot for d = 0, $\sigma_1 \sigma_2 \sigma_3^{-1} \in B_6$; bold line is for SU(2) level k = 8.

Examples of homological pseudo-Anosovs

Example

In B_3 , all pseudo-Anosovs are homological. This way, we recover the result of Andersen–Masbaum–Ueno for the sphere with four marked points.

Example (Penner)

- ▶ Assume *n* is even, and let $\sigma_1, \ldots, \sigma_{n-1}$ be the standard generators of B_n .
- Take any word φ in the generators where the signs of powers correspond to the parity of the index.
- For example: n = 6, $\varphi = \sigma_1^2 \sigma_2^{-4} \sigma_3^5 \sigma_4^{-10} \sigma_5^{60}$.
- Suppose that each generator appears at least once in the word. Then φ is a homological pseudo-Anosov.

A pseudo-Anosov in B_6 acting trivially on homology of double cover (Brown).

Examples: Plots of spectral radii

For $arphi\in B_n$, consider the functions $\mathrm{sr}_d(arphi):[0,1] o\mathbb{R}_+$

$$\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral} \operatorname{radius} \operatorname{of} \eta_A^{n,d}(\varphi) \operatorname{at} q = A^4 = \exp(\pi i x).$$

Concrete levels

Theorem (Masbaum, '99)

Quantum SU(2)-representations have elements of infinite order for all levels k, except perhaps for k = 1, 2, 4, 8.

Theorem (Laszlo-Pauly-Sorger, '13)

The quantum SU(2)-representations of the sphere with four marked points has finite image for k = 1, 2, 4, 8.

Proposition

Quantum representations have infinite order elements at level k = 8 as well.