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The Chern-Simons partition function

> Let k € N (called the level) and define the Chern-Simons
partition function

Z,};)hyS(M) _ / 2TkCS(ADA € C.
A/G

» Assume that M contains a framed oriented link L, and choose
for every component L; of L a finite dimensional
representation R; of G = SU(N). Set

ZPMS(M, L, R) = / [T tr(Ri(hola(L)))e*™* SADA.
Jayg =

Witten '89: This extends to a TQFT.

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zj is part of a
2 + 1-dimensional topological quantum field theory (Z, Vk):
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Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zj is part of a
2 + 1-dimensional topological quantum field theory (Z, Vk):

>
V(¥)
Z(M)
A~

Notation

> Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.

» Let A= Q}(M, g) be the space of connections in
G XM — M, and let G = C>°(M, G) be the group of gauge
transformations acting on A.

» Define the Chern—Simons functional CS : A — R by

1 2
CS(A) = Q/Mtr(A/\ dA+SANANA)

» For g € G, we have CS(g*A) — CS(A) € Z, and we can
consider
CS: A/G - R/Z

A possible construction

Theorem (Reshetikhin—Turaev, 1991)

One can construct a topological invariant Zy of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Z} hys s supposed to do.

Source of inspiration

For a closed oriented 3-manifold M,

ZP (M) = Z(M).

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zj is part of a
2 + 1-dimensional topological quantum field theory (Z, Vk):
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Quantum representations

The data (Z, V) satisfies a number of axioms.

Example

Let ¢ : ¥ — X be a diffeomorphism and consider the mapping
cylinder

Co=%x[0,3]UsZ x[3,1]

Then Z(C,) : V(X) — V(X) depends on ¢ only up to isotopy.
Define the (projective) quantum representations

p: MCG(X) = PGL(V(X))

by p([¢]) = Z(C,). Furthermore, Z(C,) = V().



Constructing quantum representations

Several equivalent approaches to the construction of quantum
SU(N)-representations (Vi k, pn,k) exist:

» Categorical /combinatorial through modular functors: obtained
from representation theory of Ug(sly) (with g = exp(kz%)),
the skein theory of the Kauffman bracket/HOMFLYPT
polynomial ...

» Conformal field theory: the monodromy of the WZW
connection in the sheaf of conformal blocks.

» Geometric quantization of moduli spaces of flat
connections/bundles: the monodromy of the Hitchin
connection (no marked points).

These approaches are equivalent: Laszlo, Andersen—Ueno, ...

The genus 0 case

> Let ¥ = CU {oo} be a genus zero surface with marked points
{1,...,n,00} labelled by Young diagrams {m, ...,o A*},
where X\ has at most 2 rows (at most 1 if N = 2), and %
denotes the dual diagram.

> Let V@,k denote the vector space associated by any of the
modular functors to ¥.

» The MCG of X (preserving marked points + labels) naturally
contains B,,.

> Let pﬁ,"k :Bp — GL(V,(\,,,() denote the restriction of the
quantum representation to this B,.

Theorem

For k > n, pf\‘,ﬁ « is equivalent to the diagram representation 7)2“1
from Jens Kristian's talk with g = A* = exp(2mi/(N + k)), d <+ \.

Visualizing pseudo-Anosov braids

Source: Mark A. Stremler

» Left: Initial position.
» Center: Stirring by finite order braid.
» Right: Stirring by pseudo-Anosov braid.

Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all pﬁ/, « for homological
pseudo-Anosovs ¢ € Bp: those with only odd-pronged singularities
in the marked points and even-pronged singularities in the other
interior points. Furthermore, stretch factors may be determined
from k-limits of eigenvalues of Pi\v, « for these pseudo-Anosovs.

Main steps in proof
> Recall that pjy = 13 for A* = q = exp(2i/(k + N)).
» The order of T]Z'd((p) at a primitive root of unity depends only
on the order of the root.

» It suffices to show that the spectral radius of nf\‘d(go) is
greater than 1 for an A € U(1): Every z € U(1) may be
approximated by primitive n'th roots of unity z, (Iwaniec).

A simple example
Example
Let f = id € MCG(Z,), G = SU(2). Then

trpgvk(id) =dim ngk(Zg)
k+2 g—1k+1 . jﬂ_ 1-g
= <72 ) J;l (sm P 2) eN.

This is the Verlinde formula. For example,

dim Vi (Zo) = 1,
dim Vk(Zl) =k + ].7
dim Vi(S2) = S(k + 1)(k + 2)(k + 3).

6

Isotopy invariant dynamics
What dynamical information do mapping classes contain?

Theorem (Nielsen—Thurston)
Let ¥ be a surface (possibly punctured but with no boundary). A
mapping class ¢ € MCG(X) is either

» finite order,

> infinite order but has a power preserving the homotopy class
of an essential simple closed curve (i is reducible), or

» pseudo-Anosov: there are transverse measured singular
foliations (F*, 11°), (FY,u") of X, x > 1 and a diffeo. f,
[fl=¢, st

FF2 %) = (F W), F(FY ) = (Fx”).
Here, x is called the stretch factor of .

For surfaces with boundary, replace boundaries by punctures.

The NT classification vs. quantum reps

Are the quantum reps /’ﬁLk sensitive to the trichotomy?

Conjecture (Andersen—Masbaum-Ueno '06)

Consider a general genus g surface © with n marked points.
Assume 2g +n > 2, and let ¢ € MCG(X) be a pseudo-Anosov.
Then there exists ko s.t. pnk(y) has infinite order for k > k.

Question (Andersen—Masbaum-Ueno '06)

Do pn k determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.

Generalizing AMU (continued)

Proof (continued).

» Main result: né’)’(‘;(_ﬂi/‘l) is essentially an exterior power of the
lifted action on homology of the ramified double cover.

» The pseudo-Anosov ¢ lifts to a pseudo-Anosov @ on the
covering surface with the same stretch factor.

» The foliations of ¢ have consistently orientable leaves. The
stretch factor of a pseudo-Anosov with this property is the
spectral radius of its action on homology.

» For exterior powers of homology, we need to ensure that
eigenvectors lie in the image of morphism of representations.

» For odd n this is possible by the explicit description of the
representation.

» For even n, use induction on d and a known decomposition

n+1,d+1 n,d n,d+2
Na lB, mp” @ mg -



Examples: Plots of spectral radii
For ¢ € By, consider the functions srq() : [0,1] — R4

srg(p)(x) = spectral radius of nf\’d(cp) at g = A* = exp(mix).
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The pseudo-Anosov g0, 1 € Bs (dashed line = stretch factor).

Examples: Plots of spectral radii
For ¢ € By, consider the functions srq(p) : [0,1] — R4

srq(p)(x) = spectral radius of n;’"d(ap) at g = A* = exp(mix).
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Small stretch factor, 010203’1 € By
(non-homological, Lanneau-Thiffeault).

Concrete levels

We can read off at which levels, orders become infinite.
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Plot for d =0, 0’10’20';1 € Bs; bold line is for SU(2) level k = 8.

Examples of homological pseudo-Anosovs

Example

In Bs, all pseudo-Anosovs are homological. This way, we recover
the result of Andersen—Masbaum—Ueno for the sphere with four
marked points.

Example (Penner)

» Assume n is even, and let 01,...,0,-1 be the standard
generators of B,.

> Take any word ¢ in the generators where the signs of powers
correspond to the parity of the index.

> For example: n =6, ¢ = 030, 030, %0,

» Suppose that each generator appears at least once in the
word. Then ¢ is a homological pseudo-Anosov.

Examples: Plots of spectral radii
For ¢ € By, consider the functions srq(¢) : [0,1] — R4

stg(p)(x) = spectral radius of W]Z’d((p) at g = A* = exp(mix).
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A pseudo-Anosov in Bg acting trivially on homology of double
cover (Brown).

Examples: Plots of spectral radii
For ¢ € By, consider the functions srq(¢) : [0,1] — R4

srg(p)(x) = spectral radius of W]Z’d(go) at g = A* = exp(mix).
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Small stretch factor, o5 %(01 - - - 06) € By
(non-homological).

Concrete levels

Theorem (Masbaum, '99)

Quantum SU(2)-representations have elements of infinite order for
all levels k, except perhaps for k = 1,2,4,8.

Theorem (Laszlo-Pauly—Sorger, '13)

The quantum SU(2)-representations of the sphere with four
marked points has finite image for k =1,2,4,8.

Proposition

Quantum representations have infinite order elements at level
k =8 as well.
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