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Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A ∼= Ω1(M, g) be the space of connections in
G ×M → M, and let G ∼= C∞(M,G) be the group of gauge
transformations acting on A.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z
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The Chern–Simons partition function

Let k ∈ N (called the level) and define the Chern–Simons
partition function

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA ∈ C.

Assume that M contains a framed oriented link L, and choose
for every component Li of L a finite dimensional
representation Ri of G = SU(N). Set

Zphys
k (M, L,R) =

∫
A/G

∏
i
tr(Ri (holA(Li )))e2πik CS(A)DA.

Witten ’89: This extends to a TQFT.
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A possible construction

Theorem (Reshetikhin–Turaev, 1991)
One can construct a topological invariant Zk of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Zphys

k is supposed to do.

Source of inspiration
For a closed oriented 3-manifold M,

Zphys
k (M) = Zk(M).
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Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zk is part of a
2 + 1-dimensional topological quantum field theory (Zk ,Vk):
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Vector space

Young diagrams with < N rows

and <k           +1 columns 
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homeo. iso.

Vector space
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Quantum representations

The data (Z ,V ) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a diffeomorphism and consider the mapping
cylinder

Cϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Then Z (Cϕ) : V (Σ)→ V (Σ) depends on ϕ only up to isotopy.
Define the (projective) quantum representations
ρ : MCG(Σ)→ PGL(V (Σ)) by ρ([ϕ]) = Z (Cϕ). Furthermore,
Z (Cϕ) = V (ϕ).
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Constructing quantum representations

Several equivalent approaches to the construction of quantum
representations exist:

Categorical/combinatorial through modular functors: (Vk , ρk)
obtained from representation theory of Uq(slN), the skein
theory of the Kauffman bracket/HOMFLYPT polynomial, ...
Conformal field theory: the monodromy of the WZW
connection in the sheaf of conformal blocks.
Geometric quantization of moduli spaces: the monodromy of
the Hitchin connection (no marked points).
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The genus 0 case

Let Σ = C ∪ {∞} be a genus zero surface with marked points
{1, . . . , n,∞} labelled by Young diagrams { , . . . , , λ?},
where λ has at most 2 rows (1 if N = 2), and ? denotes the
dual diagram.
Let V λ

N,k denote the vector space associated by any of the
modular functors to Σ.
The MCG of Σ naturally contains Bn. Let
ρλN,k : Bn → GL(V λ

N,k) denote the restriction of the quantum
representation to this Bn.

Theorem (Kanie)

For k > n, ρλN,k is equivalent to the diagram representation ηn,d
A

from Jens Kristian’s talk with q = A4 = exp(2πi/(N + k)), d ↔ λ.
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Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)
A mapping class ϕ ∈ MCG(Σ) is either

finite order,
infinite order but has a power preserving the homotopy class
of an essential simple closed curve (ϕ is reducible), or
pseudo-Anosov: there are transverse measured singular
foliations (F s , µs), (Fu, µu) of Σ, λ > 1 and a diffeo. f ,
[f ] = ϕ, s.t.

f (F s , µs) = (F s , λ−1µs), f (Fu, µu) = (Fu, λµu).

Here, λ is called the stretch factor of ϕ.
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Visualizing pseudo-Anosov braids

Figure: Source: Mark A. Stremler

Left: Initial position.
Center: Stirring by finite order braid.
Right: Stirring by pseudo-Anosov braid.
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The NT classification vs. quantum reps

Are the quantum reps ρk sensitive to the trichotomy?

Conjecture (Andersen–Masbaum–Ueno ’06)
Let 2g + n > 2, and let ϕ ∈ MCG(Σ) be a pseudo-Anosov. Then
there exists k0 s.t. ρN,k(ϕ) has infinite order for k > k0.

Question (Andersen–Masbaum–Ueno ’06)
Do ρN,k determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.
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Generalizing AMU

Theorem (Egsgaard, SFJ)
The AMU conjecture holds true for all ρλN,k for homological
pseudo-Anosovs ϕ ∈ Bn: those with only odd-pronged singularities
in the marked points and even-pronged singularities in the other
interior points. Furthermore, stretch factors may be determined as
k-limits of eigenvalues of ρλN,k for these pseudo-Anosovs.

Main steps in proof

Recall that ρλN,k ∼= ηn,d
A for A4 = q = exp(2πi/(k + N)).

The order of ηn,d
A (ϕ) at a primitive root of unity depends only

on the order of the root.
It suffices to show that the spectral radius of ηλA(ϕ) is greater
than 1 for an A ∈ U(1): Every z ∈ U(1) may be approximated
by primitive n’th roots of unity zn (Iwaniec).
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Generalizing AMU (continued)

Proof (continued).
Main result: ηλexp(πi/4) is essentially an exterior power of the
lifted action on homology of the ramified double cover.
The pseudo-Anosov ϕ lifts to a pseudo-Anosov ϕ̃ on the
covering surface with the same stretch factor.
The foliations of ϕ̃ have consistently orientable leaves. The
stretch factor of a pseudo-Anosov with this property is the
spectral radius of its action on homology.
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Examples: Plots of spectral radii
For ϕ ∈ Bn, consider the functions srd (ϕ) : [0, 1]→ R+

srd (ϕ)(x) = spectral radius of ηn,d
A (ϕ) at q = A4 = exp(πix).
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The pseudo-Anosov σ1σ
−1
2 ∈ B3 (dashed line = stretch factor).
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A pseudo-Anosov in B6 acting trivially on homology (Brown).
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Examples: Plots of spectral radii
For ϕ ∈ Bn, consider the functions srd (ϕ) : [0, 1]→ R+
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Small stretch factor, σ1σ2σ
−1
3 ∈ B4 (non-homological,

Lanneau–Thiffeault).
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Examples: Plots of spectral radii
For ϕ ∈ Bn, consider the functions srd (ϕ) : [0, 1]→ R+

srd (ϕ)(x) = spectral radius of ηn,d
A (ϕ) at q = A4 = exp(πix).
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2 (σ1 · · ·σ6)2 ∈ B7 (non-homological).
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Concrete levels

We can read off at which levels, orders become infinite.
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Plot for d = 0, σ1σ2σ
−1
3 ∈ B6; bold line is for SU(2) level k = 8.
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Concrete levels

Theorem (Masbaum, ’99)
Quantum representations have elements of infinite order for all
levels k, except perhaps for k = 1, 2, 4, 8.

Proposition
Quantum representations have infinite order elements at level
k = 8 as well.
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A family of homological pseudo-Anosovs

Example (Penner)
Assume n is even, and let σ1, . . . , σn−1 be the standard
generators of Bn.
Take any word ϕ in the generators where the signs of powers
correspond to the parity of the index.
For example: n = 6, ϕ = σ2

1σ
−4
2 σ5

3σ
−10
4 σ60

5 .
Suppose that each generator appears at least once in the
word. Then ϕ is a homological pseudo-Anosov.
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Thanks ...

... for listening!
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