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o Let G =SU(N), and let M be an (oriented connected framed)
closed 3-manifold.

o Let A= QY(M,g) be the space of connections in
G x M — M, and let G = C>*(M, G) be the group of gauge
transformations acting on A.

@ Define the Chern-Simons functional CS: A — R by
CS(A) = 1/ (AN A+ 2ANANA)
C 812 Im 3 ’

e For g € G, we have CS(g*A) — CS(A) € Z, and we can

consider

CS: A/G—R/Z



Background
oeo

The Chern=Simons partition function

o Let k € N (called the level) and define the Chern—-Simons
partition function

ZPY(M) = /A . 2"k CS(ADA ¢ C.



Background
oeo

The Chern=Simons partition function

o Let k € N (called the level) and define the Chern—-Simons
partition function

ZP(M) = /A . 2"k CS(A)DA € C.

@ Assume that M contains a framed oriented link L, and choose
for every component L; of L a finite dimensional
representation R; of G = SU(N). Set

ZP™ (M, L,R) = / HtrR(hoIA (L;)))eX *SADA,
A/G



Background
oeo

The Chern=Simons partition function

o Let k € N (called the level) and define the Chern—-Simons
partition function

ZP(M) = /A . 2"k CS(A)DA € C.

@ Assume that M contains a framed oriented link L, and choose
for every component L; of L a finite dimensional
representation R; of G = SU(N). Set

ZP™ (M, L,R) = / HtrR(hoIA (L;)))eX *SADA,
A/G

Witten '89: This extends to a TQFT.
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A possible construction

Theorem (Reshetikhin—Turaev, 1991)

One can construct a topological invariant Zy of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Z hys s supposed to do.

Source of inspiration

For a closed oriented 3-manifold M,

ZP (M) = Zi(M).
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Reshetikhin and Turaev proved that the invariant Z is part of a
2 + 1-dimensional topological quantum field theory (Zx, Vi):

by
V(%)
Z(M)
o
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Quantum representations

The data (Z, V) satisfies a number of axioms.

Example

Let ¢ : ¥ — ¥ be a diffeomorphism and consider the mapping
cylinder

Co =% x[0,3]U, % x [5,1]

Then Z(C,) : V(X) — V(X) depends on ¢ only up to isotopy.
Define the (projective) quantum representations
p: MCG(X) — PGL(V(X)) by p([¢]) = Z(C,). Furthermore,
Z(Cp) = V(p).
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Constructing quantum representations

Several equivalent approaches to the construction of quantum
representations exist:

o Categorical/combinatorial through modular functors: ( Vi, pk)
obtained from representation theory of Uq(sly), the skein
theory of the Kauffman bracket/HOMFLYPT polynomial, ...

o Conformal field theory: the monodromy of the WZW
connection in the sheaf of conformal blocks.

@ Geometric quantization of moduli spaces: the monodromy of
the Hitchin connection (no marked points).
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The genus 0 case

o Let ¥ = CU {oo} be a genus zero surface with marked points
{1,...,n,00} labelled by Young diagrams {o,...,0, A\*},
where A has at most 2 rows (1 if N = 2), and * denotes the
dual diagram.

o Let Vli\/,k denote the vector space associated by any of the
modular functors to ¥.

@ The MCG of X naturally contains B,,. Let
pi\v,k : By — GL(Vﬁ,k) denote the restriction of the quantum
representation to this B,,.

Theorem (Kanie)

For k > n, p;\\,’k is equivalent to the diagram representation nf"d
from Jens Kristian's talk with ¢ = A* = exp(27i/(N + k)), d > .
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What dynamical information do mapping classes contain?

Theorem (Nielsen—Thurston)

A mapping class o € MCG(X) is either
o finite order,

@ infinite order but has a power preserving the homotopy class
of an essential simple closed curve (p is reducible), or

@ pseudo-Anosov: there are transverse measured singular
foliations (F*, uu®), (FY,u") of £, A > 1 and a diffeo. f,
[f] =, s.t.

FFS, 1) = (F=, A1), F(F, ) = (F ).

Here, A is called the stretch factor of .
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Visualizing pseudo-Anosov braids

Figure: Source: Mark A. Stremler

o Left: Initial position.
@ Center: Stirring by finite order braid.
o Right: Stirring by pseudo-Anosov braid.
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The NT classification vs. quantum reps

Are the quantum reps py sensitive to the trichotomy?

Conjecture (Andersen—Masbaum-Ueno '06)

Let 2g + n > 2, and let ¢ € MCG(X) be a pseudo-Anosov. Then
there exists ko s.t. pn k() has infinite order for k > ko.

Question (Andersen—Masbaum—Ueno '06)

Do pp « determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.
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Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all pﬁ,y « for homological
pseudo-Anosovs ¢ € B,: those with only odd-pronged singularities
in the marked points and even-pronged singularities in the other
interior points. Furthermore, stretch factors may be determined as
k-limits of eigenvalues of pﬁ,’ « for these pseudo-Anosovs.

| A\

Main steps in proof

o Recall that py , = nwe for A* = q = exp(27i/(k + N)).
@ The order of nf\’d(cp) at a primitive root of unity depends only
on the order of the root.

o It suffices to show that the spectral radius of nX(¢) is greater
than 1 for an A € U(1): Every z € U(1) may be approximated
by primitive n'th roots of unity z, (lwaniec).
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Generalizing AMU (continued)

Proof (continued).

e Main result: né\xp(m./4) is essentially an exterior power of the
lifted action on homology of the ramified double cover.




Quantum representations and dynamics

0O0000e00000000

Generalizing AMU (continued)

Proof (continued).

e Main result: né\xp(m./4) is essentially an exterior power of the
lifted action on homology of the ramified double cover.

@ The pseudo-Anosov ¢ lifts to a pseudo-Anosov ¢ on the
covering surface with the same stretch factor.
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Generalizing AMU (continued)

Proof (continued).

e Main result: né\xp(m./4) is essentially an exterior power of the
lifted action on homology of the ramified double cover.

@ The pseudo-Anosov ¢ lifts to a pseudo-Anosov ¢ on the
covering surface with the same stretch factor.

o The foliations of ¢ have consistently orientable leaves. The
stretch factor of a pseudo-Anosov with this property is the
spectral radius of its action on homology.
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Examples: Plots of spectral radii

For ¢ € B, consider the functions srq(y) : [0,1] — R4

sry(p)(x) = spectral radius of nf\’d(go) at g = A* = exp(mix).
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For ¢ € B, consider the functions srq(y) : [0,1] — R4

sry(p)(x) = spectral radius of nf\’d(go) at g = A* = exp(mix).

2,618
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1 1 3
4 2 4 1

The pseudo-Anosov 0105 * € Bz (dashed line = stretch factor).
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Examples: Plots of spectral radii

For ¢ € B, consider the functions srq(y) : [0,1] — R4

srq(p)(x) = spectral radius of nZ’d(cp) at g = A* = exp(mix).
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A pseudo-Anosov in Bg acting trivially on homology (Brown).
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Examples: Plots of spectral radii

For ¢ € B, consider the functions srq(y) : [0,1] — R4

sry(p)(x) = spectral radius of nf\’d(go) at g = A* = exp(mix).
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Small stretch factor, 010203_1 € By (non-homological,
Lanneau—Thiffeault).
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Examples: Plots of spectral radii

For ¢ € B, consider the functions srq(y) : [0,1] — R4

srq(p)(x) = spectral radius of nZ’d(cp) at g = A* = exp(mix).

1,466

w1
o3
o5

1 1 3
! " 1

Small stretch factor, o5 2(01 - - - 06)? € B (non-homological).
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0, 010203+ € Bg; bold line is for SU(2) level k = 8.

We can read off at which levels, orders become infinite.

Concrete levels
Plot for d
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Concrete levels

Theorem (Masbaum, '99)

Quantum representations have elements of infinite order for all
levels k, except perhaps for k =1,2,4,8.

Proposition

Quantum representations have infinite order elements at level
k =8 as well.
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A family of homological pseudo-Anosovs

Example (Penner)

@ Assume n is even, and let 01,...,0,_1 be the standard
generators of B,.

@ Take any word ¢ in the generators where the signs of powers
correspond to the parity of the index.

o For example: n =6, p = 0305030, %080

@ Suppose that each generator appears at least once in the
word. Then ¢ is a homological pseudo-Anosov.
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Thanks ...

... for listening!
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