▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Jones representations of braid groups at q = -1 (Part II) Winter Braids IV – Dijon

Søren Fuglede Jørgensen joint work with Jens Kristian Egsgaard

Uppsala University

February 12th, 2014

Backgrou	nd
000	

Notation

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(\mathcal{M}, \mathfrak{g})$ be the space of connections in $G \times \mathcal{M} \to \mathcal{M}$, and let $\mathcal{G} \cong C^{\infty}(\mathcal{M}, \mathcal{G})$ be the group of gauge transformations acting on \mathcal{A} .
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

$$\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

Notation

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A ≅ Ω¹(M, g) be the space of connections in G × M → M, and let G ≅ C[∞](M, G) be the group of gauge transformations acting on A.
- ${\ \bullet \ }$ Define the Chern–Simons functional CS : ${\mathcal A} \to {\mathbb R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

$$\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

Notation

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A ≅ Ω¹(M, g) be the space of connections in G × M → M, and let G ≅ C[∞](M, G) be the group of gauge transformations acting on A.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Notation

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A ≅ Ω¹(M, g) be the space of connections in G × M → M, and let G ≅ C[∞](M, G) be the group of gauge transformations acting on A.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

$$\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$$

TQFTs and quantum representations

The Chern–Simons partition function

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

 Assume that M contains a framed oriented link L, and choose for every component L_i of L a finite dimensional representation R_i of G = SU(N). Set

$$Z_k^{\text{phys}}(M, L, R) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_A(L_i))) e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Witten '89: This extends to a TQFT.

TQFTs and quantum representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Chern–Simons partition function

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

Assume that *M* contains a framed oriented link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*). Set

$$Z_k^{\text{phys}}(M, \boldsymbol{L}, \boldsymbol{R}) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_{\mathcal{A}}(\boldsymbol{L}_i))) e^{2\pi i k \operatorname{CS}(\mathcal{A})} \mathcal{D} \mathcal{A}.$$

Witten '89: This extends to a TQFT.

TQFTs and quantum representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Chern–Simons partition function

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

Assume that *M* contains a framed oriented link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*). Set

$$Z_k^{\text{phys}}(M, \boldsymbol{L}, \boldsymbol{R}) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_{\mathcal{A}}(\boldsymbol{L}_i))) e^{2\pi i k \operatorname{CS}(\mathcal{A})} \mathcal{D} \mathcal{A}.$$

Witten '89: This extends to a TQFT.

A possible construction

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Source of inspiration

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

A possible construction

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

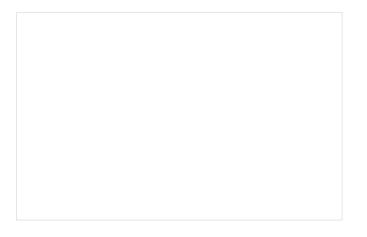
Source of inspiration

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

TQFTs and quantum representations $\bullet \circ \circ$

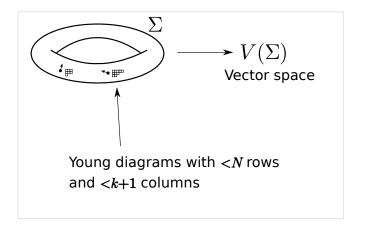
Topological quantum field theory



TQFTs and quantum representations •00 Quantum representations and dynamics

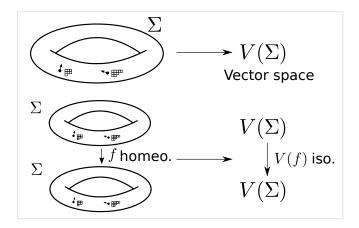
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topological quantum field theory



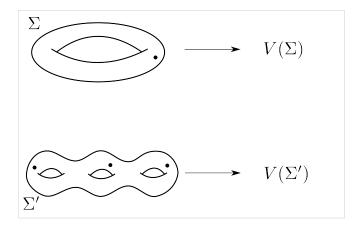
TQFTs and quantum representations ••••

Topological quantum field theory



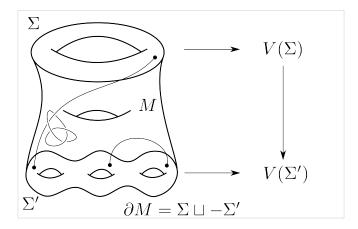
TQFTs and quantum representations

Topological quantum field theory



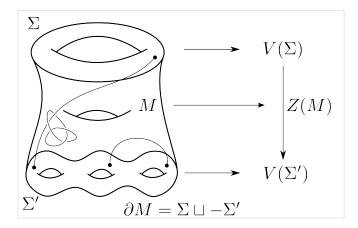
TQFTs and quantum representations ••••

Topological quantum field theory



TQFTs and quantum representations •••• ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topological quantum field theory



Quantum representations

The data (Z, V) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder

$$C_{\varphi} = \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1]$$

Then $Z(C_{\varphi}) : V(\Sigma) \to V(\Sigma)$ depends on φ only up to isotopy. Define the (projective) quantum representations $\rho : MCG(\Sigma) \to PGL(V(\Sigma))$ by $\rho([\varphi]) = Z(C_{\varphi})$. Furthermore, $Z(C_{\varphi}) = V(\varphi)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Quantum representations

The data (Z, V) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder

$$\mathcal{C}_{arphi} = \mathbf{\Sigma} imes [\mathbf{0}, rac{1}{2}] \cup_{arphi} \mathbf{\Sigma} imes [rac{1}{2}, 1]$$

Then $Z(C_{\varphi}) : V(\Sigma) \to V(\Sigma)$ depends on φ only up to isotopy. Define the (projective) quantum representations $\rho : MCG(\Sigma) \to PGL(V(\Sigma))$ by $\rho([\varphi]) = Z(C_{\varphi})$. Furthermore, $Z(C_{\varphi}) = V(\varphi)$.

Quantum representations

The data (Z, V) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder

$$C_{\varphi} = \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1]$$

Then $Z(C_{\varphi}) : V(\Sigma) \to V(\Sigma)$ depends on φ only up to isotopy. Define the (projective) *quantum representations* $\rho : MCG(\Sigma) \to PGL(V(\Sigma))$ by $\rho([\varphi]) = Z(C_{\varphi})$. Furthermore, $Z(C_{\varphi}) = V(\varphi)$.

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (no marked points).

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (no marked points).

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (no marked points).

Constructing quantum representations

- Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (no marked points).

The genus 0 case

- Let Σ = C ∪ {∞} be a genus zero surface with marked points {1,..., n,∞} labelled by Young diagrams {□,...,□, λ*}, where λ has at most 2 rows (1 if N = 2), and ★ denotes the dual diagram.
- Let $V_{N,k}^{\lambda}$ denote the vector space associated by any of the modular functors to Σ .
- The MCG of Σ naturally contains B_n . Let $\rho_{N,k}^{\lambda}: B_n \to \operatorname{GL}(V_{N,k}^{\lambda})$ denote the restriction of the quantum representation to this B_n .

Theorem (Kanie)

For k > n, $\rho_{N,k}^{\lambda}$ is equivalent to the diagram representation $\eta_A^{n,d}$ from Jens Kristian's talk with $q = A^4 = \exp(2\pi i/(N+k))$, $d \leftrightarrow \lambda$.

The genus 0 case

- Let Σ = C ∪ {∞} be a genus zero surface with marked points {1,..., n,∞} labelled by Young diagrams {□,...,□, λ*}, where λ has at most 2 rows (1 if N = 2), and ★ denotes the dual diagram.
- Let $V_{N,k}^{\lambda}$ denote the vector space associated by any of the modular functors to Σ .
- The MCG of Σ naturally contains B_n . Let $\rho_{N,k}^{\lambda}: B_n \to \operatorname{GL}(V_{N,k}^{\lambda})$ denote the restriction of the quantum representation to this B_n .

Theorem (Kanie)

For k > n, $\rho_{N,k}^{\lambda}$ is equivalent to the diagram representation $\eta_A^{n,d}$ from Jens Kristian's talk with $q = A^4 = \exp(2\pi i/(N+k))$, $d \leftrightarrow \lambda$.

The genus 0 case

- Let Σ = C ∪ {∞} be a genus zero surface with marked points {1,..., n,∞} labelled by Young diagrams {□,...,□, λ*}, where λ has at most 2 rows (1 if N = 2), and ★ denotes the dual diagram.
- Let $V_{N,k}^{\lambda}$ denote the vector space associated by any of the modular functors to Σ .
- The MCG of Σ naturally contains B_n . Let $\rho_{N,k}^{\lambda}: B_n \to \operatorname{GL}(V_{N,k}^{\lambda})$ denote the restriction of the quantum representation to this B_n .

Theorem (Kanie)

For k > n, $\rho_{N,k}^{\lambda}$ is equivalent to the diagram representation $\eta_A^{n,d}$ from Jens Kristian's talk with $q = A^4 = \exp(2\pi i/(N+k))$, $d \leftrightarrow \lambda$.

The genus 0 case

- Let Σ = C ∪ {∞} be a genus zero surface with marked points {1,..., n,∞} labelled by Young diagrams {□,...,□, λ*}, where λ has at most 2 rows (1 if N = 2), and ★ denotes the dual diagram.
- Let $V_{N,k}^{\lambda}$ denote the vector space associated by any of the modular functors to Σ .
- The MCG of Σ naturally contains B_n . Let $\rho_{N,k}^{\lambda}: B_n \to \operatorname{GL}(V_{N,k}^{\lambda})$ denote the restriction of the quantum representation to this B_n .

Theorem (Kanie)

For k > n, $\rho_{N,k}^{\lambda}$ is equivalent to the diagram representation $\eta_A^{n,d}$ from Jens Kristian's talk with $q = A^4 = \exp(2\pi i/(N+k))$, $d \leftrightarrow \lambda$.

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

```
A mapping class \varphi \in \mathsf{MCG}(\Sigma) is either
```

- finite order,
- infinite order but has a power preserving the homotopy class of an essential simple closed curve (φ is reducible), or
- Description of the second description of the second description
 Information (1997) and (1997) and (1997) and (1997) and (1997)

1 (12° 11°) -- (12° 12° 11°) -- (12° 11°) -- (12° 11°) -- (12° 11°)

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either
 - finite order,
 - infinite order but has a power preserving the homotopy class of an essential simple closed curve (φ is reducible), or
 - pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a diffeo. f, [f] = φ, s.t.

 $f(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s), \quad f(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u).$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either
 - finite order,
 - infinite order but has a power preserving the homotopy class of an essential simple closed curve (φ is reducible), or
 - pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a diffeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^s,\mu^s) = (\mathcal{F}^s,\lambda^{-1}\mu^s), \ f(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda\mu^u).$$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

- A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either
 - finite order,
 - infinite order but has a power preserving the homotopy class of an essential simple closed curve (φ is reducible), or
 - pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a diffeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^s,\mu^s) = (\mathcal{F}^s,\lambda^{-1}\mu^s), \ f(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda\mu^u).$$

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen–Thurston)

A mapping class $\varphi \in \mathsf{MCG}(\Sigma)$ is either

- finite order,
- infinite order but has a power preserving the homotopy class of an essential simple closed curve (φ is reducible), or
- pseudo-Anosov: there are transverse measured singular foliations (F^s, μ^s), (F^u, μ^u) of Σ, λ > 1 and a diffeo. f, [f] = φ, s.t.

$$f(\mathcal{F}^s,\mu^s) = (\mathcal{F}^s,\lambda^{-1}\mu^s), \ f(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda\mu^u).$$

TQFTs and quantum representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Visualizing pseudo-Anosov braids

Figure: Source: Mark A. Stremler

• Left: Initial position.

- Center: Stirring by finite order braid.
- Right: Stirring by pseudo-Anosov braid.

TQFTs and quantum representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Visualizing pseudo-Anosov braids

Figure: Source: Mark A. Stremler

- Left: Initial position.
- Center: Stirring by finite order braid.
- Right: Stirring by pseudo-Anosov braid.

TQFTs and quantum representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Visualizing pseudo-Anosov braids

Figure: Source: Mark A. Stremler

- Left: Initial position.
- Center: Stirring by finite order braid.
- Right: Stirring by pseudo-Anosov braid.

The NT classification vs. quantum reps

Are the quantum reps ρ_k sensitive to the trichotomy?

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma)$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_{N,k}(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do $\rho_{N,k}$ determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.

The NT classification vs. quantum reps

Are the quantum reps ρ_k sensitive to the trichotomy?

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma)$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_{N,k}(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do $\rho_{N,k}$ determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

The NT classification vs. quantum reps

Are the quantum reps ρ_k sensitive to the trichotomy?

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma)$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_{N,k}(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do $\rho_{N,k}$ determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

The NT classification vs. quantum reps

Are the quantum reps ρ_k sensitive to the trichotomy?

Conjecture (Andersen–Masbaum–Ueno '06)

Let 2g + n > 2, and let $\varphi \in MCG(\Sigma)$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_{N,k}(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen–Masbaum–Ueno '06)

Do $\rho_{N,k}$ determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.

Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all $\rho_{N,k}^{\lambda}$ for homological pseudo-Anosovs $\varphi \in B_n$: those with only odd-pronged singularities in the marked points and even-pronged singularities in the other interior points. Furthermore, stretch factors may be determined as k-limits of eigenvalues of $\rho_{N,k}^{\lambda}$ for these pseudo-Anosovs.

- Recall that $\rho_{N,k}^{\lambda} \cong \eta_A^{n,d}$ for $A^4 = q = \exp(2\pi i/(k+N))$.
- The order of η^{n,d}_A(φ) at a primitive root of unity depends only on the order of the root.
- It suffices to show that the spectral radius of $\eta^{\lambda}_{A}(\varphi)$ is greater than 1 for an $A \in U(1)$: Every $z \in U(1)$ may be approximated by *primitive* n'th roots of unity z_n (Iwaniec).

Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all $\rho_{N,k}^{\lambda}$ for homological pseudo-Anosovs $\varphi \in B_n$: those with only odd-pronged singularities in the marked points and even-pronged singularities in the other interior points. Furthermore, stretch factors may be determined as k-limits of eigenvalues of $\rho_{N,k}^{\lambda}$ for these pseudo-Anosovs.

- Recall that $\rho_{N,k}^{\lambda} \cong \eta_A^{n,d}$ for $A^4 = q = \exp(2\pi i/(k+N))$.
- The order of $\eta_A^{n,d}(\varphi)$ at a primitive root of unity depends only on the order of the root.
- It suffices to show that the spectral radius of η^λ_A(φ) is greater than 1 for an A ∈ U(1): Every z ∈ U(1) may be approximated by primitive n'th roots of unity z_n (Iwaniec).

Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all $\rho_{N,k}^{\lambda}$ for homological pseudo-Anosovs $\varphi \in B_n$: those with only odd-pronged singularities in the marked points and even-pronged singularities in the other interior points. Furthermore, stretch factors may be determined as k-limits of eigenvalues of $\rho_{N,k}^{\lambda}$ for these pseudo-Anosovs.

- Recall that $ho_{N,k}^{\lambda}\cong \eta_A^{n,d}$ for $A^4=q=\exp(2\pi i/(k+N)).$
- The order of $\eta_A^{n,d}(\varphi)$ at a primitive root of unity depends only on the order of the root.
- It suffices to show that the spectral radius of η^λ_A(φ) is greater than 1 for an A ∈ U(1): Every z ∈ U(1) may be approximated by primitive n'th roots of unity z_n (Iwaniec).

Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all $\rho_{N,k}^{\lambda}$ for homological pseudo-Anosovs $\varphi \in B_n$: those with only odd-pronged singularities in the marked points and even-pronged singularities in the other interior points. Furthermore, stretch factors may be determined as k-limits of eigenvalues of $\rho_{N,k}^{\lambda}$ for these pseudo-Anosovs.

- Recall that $ho_{N,k}^\lambda\cong\eta_A^{n,d}$ for $A^4=q=\exp(2\pi i/(k+N)).$
- The order of $\eta_A^{n,d}(\varphi)$ at a primitive root of unity depends only on the order of the root.
- It suffices to show that the spectral radius of η^λ_A(φ) is greater than 1 for an A ∈ U(1): Every z ∈ U(1) may be approximated by primitive n'th roots of unity z_n (Iwaniec).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Generalizing AMU (continued)

Proof (continued).

- Main result: η^λ_{exp(πi/4)} is essentially an exterior power of the lifted action on homology of the ramified double cover.
- The pseudo-Anosov φ lifts to a pseudo-Anosov $\tilde{\varphi}$ on the covering surface with the same stretch factor.
- The foliations of $\tilde{\varphi}$ have consistently orientable leaves. The stretch factor of a pseudo-Anosov with this property is the spectral radius of its action on homology.

Generalizing AMU (continued)

Proof (continued).

- Main result: η^λ_{exp(πi/4)} is essentially an exterior power of the lifted action on homology of the ramified double cover.
- The pseudo-Anosov φ lifts to a pseudo-Anosov $\tilde{\varphi}$ on the covering surface with the same stretch factor.
- The foliations of $\tilde{\varphi}$ have consistently orientable leaves. The stretch factor of a pseudo-Anosov with this property is the spectral radius of its action on homology.

Generalizing AMU (continued)

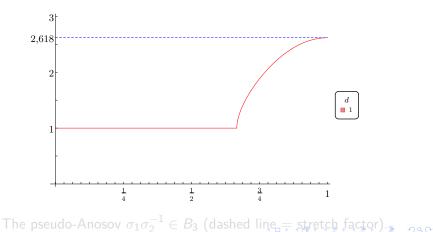
Proof (continued).

- Main result: η^λ_{exp(πi/4)} is essentially an exterior power of the lifted action on homology of the ramified double cover.
- The pseudo-Anosov φ lifts to a pseudo-Anosov $\tilde{\varphi}$ on the covering surface with the same stretch factor.
- The foliations of $\tilde{\varphi}$ have consistently orientable leaves. The stretch factor of a pseudo-Anosov with this property is the spectral radius of its action on homology.

TQFTs and quantum representations

Examples: Plots of spectral radii

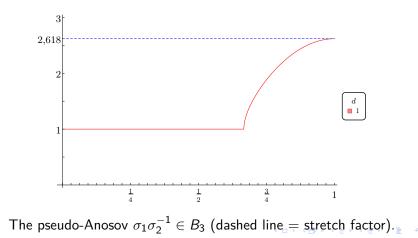
For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi) : [0,1] \to \mathbb{R}_+$ $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral radius of} \eta_A^{n,d}(\varphi) \text{ at } q = A^4 = \exp(\pi i x).$



TQFTs and quantum representations

Examples: Plots of spectral radii

For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi) : [0,1] \to \mathbb{R}_+$ $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral radius of} \eta_A^{n,d}(\varphi) \text{ at } q = A^4 = \exp(\pi i x).$

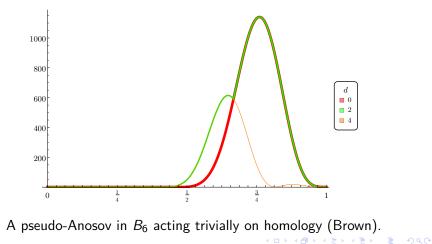


TQFTs and quantum representations

Examples: Plots of spectral radii

For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi): [0,1] \to \mathbb{R}_+$

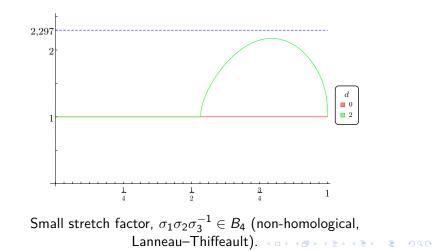
$$\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral} \operatorname{radius} \operatorname{of} \eta_A^{n,d}(\varphi) \operatorname{at} q = A^4 = \exp(\pi i x).$$



TQFTs and quantum representations

Examples: Plots of spectral radii

For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi) : [0,1] \to \mathbb{R}_+$ $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral radius of} \eta_A^{n,d}(\varphi) \text{ at } q = A^4 = \exp(\pi i x).$

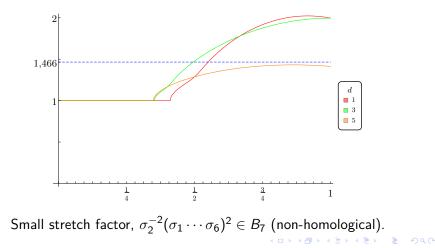


TQFTs and quantum representations

Examples: Plots of spectral radii

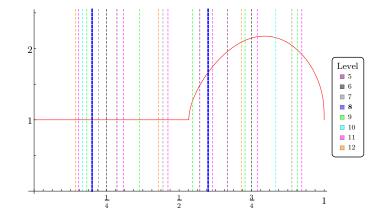
For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi) : [0,1] \to \mathbb{R}_+$

 $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral radius of } \eta_A^{n,d}(\varphi) \text{ at } q = A^4 = \exp(\pi i x).$



Concrete levels

We can read off at which levels, orders become infinite.



Plot for d = 0, $\sigma_1 \sigma_2 \sigma_3^{-1} \in B_6$; bold line is for SU(2) level k = 8.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Concrete levels

Theorem (Masbaum, '99)

Quantum representations have elements of infinite order for all levels k, except perhaps for k = 1, 2, 4, 8.

Proposition

Quantum representations have infinite order elements at level k = 8 as well.

Concrete levels

Theorem (Masbaum, '99)

Quantum representations have elements of infinite order for all levels k, except perhaps for k = 1, 2, 4, 8.

Proposition

Quantum representations have infinite order elements at level k = 8 as well.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

TQFTs and quantum representations

Quantum representations and dynamics ${\scriptstyle 0000000000000}$

A family of homological pseudo-Anosovs

- Assume *n* is even, and let $\sigma_1, \ldots, \sigma_{n-1}$ be the standard generators of B_n .
- Take any word φ in the generators where the signs of powers correspond to the parity of the index.
- For example: n = 6, $\varphi = \sigma_1^2 \sigma_2^{-4} \sigma_3^5 \sigma_4^{-10} \sigma_5^{60}$.
- Suppose that each generator appears at least once in the word. Then φ is a homological pseudo-Anosov.

TQFTs and quantum representations

Quantum representations and dynamics ${\scriptstyle 0000000000000}$

A family of homological pseudo-Anosovs

- Assume *n* is even, and let $\sigma_1, \ldots, \sigma_{n-1}$ be the standard generators of B_n .
- Take any word φ in the generators where the signs of powers correspond to the parity of the index.
- For example: n = 6, $\varphi = \sigma_1^2 \sigma_2^{-4} \sigma_3^5 \sigma_4^{-10} \sigma_5^{60}$.
- Suppose that each generator appears at least once in the word. Then φ is a homological pseudo-Anosov.

A family of homological pseudo-Anosovs

- Assume *n* is even, and let $\sigma_1, \ldots, \sigma_{n-1}$ be the standard generators of B_n .
- Take any word φ in the generators where the signs of powers correspond to the parity of the index.
- For example: n = 6, $\varphi = \sigma_1^2 \sigma_2^{-4} \sigma_3^5 \sigma_4^{-10} \sigma_5^{60}$.
- Suppose that each generator appears at least once in the word. Then φ is a homological pseudo-Anosov.

A family of homological pseudo-Anosovs

- Assume *n* is even, and let $\sigma_1, \ldots, \sigma_{n-1}$ be the standard generators of B_n .
- Take any word φ in the generators where the signs of powers correspond to the parity of the index.
- For example: n = 6, $\varphi = \sigma_1^2 \sigma_2^{-4} \sigma_3^5 \sigma_4^{-10} \sigma_5^{60}$.
- Suppose that each generator appears at least once in the word. Then φ is a homological pseudo-Anosov.

TQFTs and quantum representations $_{\rm OOO}$

 $\begin{array}{c} {\sf Quantum\ representations\ and\ dynamics}\\ {\scriptstyle 000000000000} \bullet \end{array}$

Thanks ...

... for listening!

