The Jones representations of braid groups at q=-1 (Part II) Winter Braids IV – Dijon

Søren Fuglede Jørgensen joint work with Jens Kristian Egsgaard

Uppsala University

December 4th, 2013

The Chern–Simons partition function

Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \, \mathsf{CS}(A)} \mathcal{D} A \in \mathbb{C}.$$

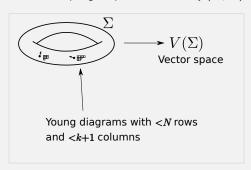
Assume that M contains a framed oriented link L, and choose for every component L_i of L a finite dimensional representation R_i of G = SU(N). Set

$$Z_k^{\mathrm{phys}}(M, \boldsymbol{L}, R) = \int_{\mathcal{A}/\mathcal{G}} \prod_i \mathrm{tr}(R_i(\mathsf{hol}_A(\boldsymbol{L}_i))) e^{2\pi i k \, \mathsf{CS}(A)} \mathcal{D} A.$$

Witten '89: This extends to a TQFT.

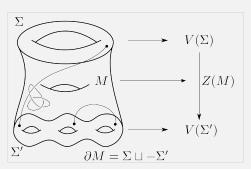
Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2+1-dimensional topological quantum field theory (Z_k, V_k) :



Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2+1-dimensional topological quantum field theory (Z_k, V_k) :



Notation

- ▶ Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let $\mathcal{A} \cong \Omega^1(M,\mathfrak{g})$ be the space of connections in $G \times M \to M$, and let $\mathcal{G} \cong C^\infty(M,G)$ be the group of gauge transformations acting on \mathcal{A} .
- lackbox Define the Chern–Simons functional CS : $\mathcal{A} o \mathbb{R}$ by

$$\mathsf{CS}(A) = \frac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + \frac{2}{3} A \wedge A \wedge A).$$

▶ For $g \in \mathcal{G}$, we have $\mathsf{CS}(g^*A) - \mathsf{CS}(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}: \mathcal{A}/\mathcal{G} \to \mathbb{R}/\mathbb{Z}$$

A possible construction

Theorem (Reshetikhin-Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way $Z_k^{\rm phys}$ is supposed to do.

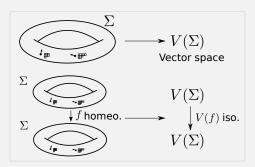
Source of inspiration

For a closed oriented 3-manifold M,

$$Z_k^{ ext{phys}}(M) = Z_k(M).$$

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2+1-dimensional topological quantum field theory (Z_k, V_k) :



Quantum representations

The data (Z, V) satisfies a number of axioms.

Example

Let $\varphi: \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping cylinder*

$$C_{\varphi} = \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1]$$

Then $Z(C_{\varphi}):V(\Sigma)\to V(\Sigma)$ depends on φ only up to isotopy. Define the (projective) *quantum representations* $\rho: \mathsf{MCG}(\Sigma)\to \mathsf{PGL}(V(\Sigma))$ by $\rho([\varphi])=Z(C_{\varphi})$. Furthermore, $Z(C_{\varphi})=V(\varphi)$.

Constructing quantum representations

- ▶ Categorical/combinatorial through modular functors: (V_k, ρ_k) obtained from representation theory of $U_q(\mathfrak{sl}_N)$, the skein theory of the Kauffman bracket/HOMFLYPT polynomial, ...
- Conformal field theory: the monodromy of the WZW connection in the sheaf of conformal blocks.
- Geometric quantization of moduli spaces: the monodromy of the Hitchin connection (no marked points).

Isotopy invariant dynamics

What dynamical information do mapping classes contain?

Theorem (Nielsen-Thurston)

A mapping class $\varphi \in MCG(\Sigma)$ is either

- ► finite order
- infinite order but has a power preserving the homotopy class of an essential simple closed curve (φ is reducible), or
- ▶ pseudo-Anosov: there are transverse measured singular foliations (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) of Σ , $\lambda > 1$ and a diffeo. f, $[f] = \varphi$, s.t.

$$f(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s), \quad f(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u).$$

Here, λ is called the stretch factor of φ .

The NT classification vs. quantum reps

Are the quantum reps ρ_k sensitive to the trichotomy?

Conjecture (Andersen-Masbaum-Ueno '06)

Let 2g + n > 2, and let $\varphi \in \mathsf{MCG}(\Sigma)$ be a pseudo-Anosov. Then there exists k_0 s.t. $\rho_{N,k}(\varphi)$ has infinite order for $k > k_0$.

Question (Andersen-Masbaum-Ueno '06)

Do $\rho_{N,k}$ determine stretch factors of pseudo-Anosovs?

AMU: These are true for a sphere with four marked points.

Generalizing AMU (continued)

Proof (continued).

- ▶ Main result: $\eta_{\exp(\pi i/4)}^{\lambda}$ is essentially an exterior power of the lifted action on homology of the ramified double cover.
- ▶ The pseudo-Anosov φ lifts to a pseudo-Anosov $\tilde{\varphi}$ on the covering surface with the same stretch factor.
- \blacktriangleright The foliations of $\tilde{\varphi}$ have consistently orientable leaves. The stretch factor of such a pseudo-Anosov is the spectral radius of its action on homology.

The genus 0 case

- ▶ Let $\Sigma = \mathbb{C} \cup \{\infty\}$ be a genus zero surface with marked points $\{1,\ldots,n,\infty\}$ labelled by Young diagrams $\{\square,\ldots,\square,\lambda^{\star}\}$, where λ has at most 2 rows (1 if N=2), and \star denotes the dual diagram.
- Let $V_{N,k}^{\lambda}$ denote the vector space associated by any of the modular functors to Σ .
- ▶ The MCG of Σ naturally contains B_n . Let $\rho_{N,k}^{\lambda}: B_n \to \operatorname{GL}(V_{N,k}^{\lambda})$ denote the restriction of the quantum representation to this B_n .

Theorem (Kanie)

For k > n, $\rho_{N,k}^{\lambda}$ is equivalent to the diagram representation $\eta_A^{n,d}$ from Jens Kristian's talk with $q = A^4 = \exp(2\pi i/(N+k))$, $d \leftrightarrow \lambda$.

Visualizing pseudo-Anosov braids

Figure: Source: Mark A. Stremler

- ▶ Left: Initial position.
- ► Center: Stirring by finite order braid.
- ▶ Right: Stirring by pseudo-Anosov braid.

Generalizing AMU

Theorem (Egsgaard, SFJ)

The AMU conjecture holds true for all $\rho_{N,k}^{\lambda}$ for homological pseudo-Anosovs $\varphi \in B_n$: those with only odd-pronged singularities in the marked points and even-pronged singularities in the other interior points. Furthermore, stretch factors may be determined as k-limits of eigenvalues of $\rho_{N,k}^{\lambda}$ for these pseudo-Anosovs.

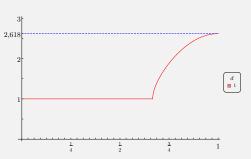
Main steps in proof

- lacksquare Recall that $ho_{N,k}^\lambda\cong\eta_A^{n,d}$ for $A^4=q=\exp(2\pi i/(k+N)).$
- ▶ The order of $\eta_A^{n,d}(\varphi)$ at a root of unity depends only on the order of the root.
- It suffices to show that the spectral radius of $\eta_A^{\lambda}(\varphi)$ is greater than 1 for an $A \in U(1)$: Every $z \in U(1)$ may be approximated by n'th roots of unity z_n (Iwaniec).

Examples: Plots of spectral radii

For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi) : [0,1] \to \mathbb{R}_+$

 $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral\ radius\ of\ } \eta_A^{n,d}(\varphi) \operatorname{at\ } q = A^4 = \exp(\pi i x).$

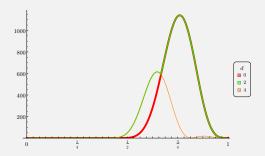


The pseudo-Anosov $\sigma_1\sigma_2^{-1} \in B_3$ (dashed line = stretch factor).

Examples: Plots of spectral radii

For $\varphi \in B_n$, consider the functions $\operatorname{sr}_d(\varphi) : [0,1] \to \mathbb{R}_+$

 $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral\ radius\ of\ } \eta_A^{n,d}(\varphi) \operatorname{\ at\ } q = A^4 = \exp(\pi i x).$

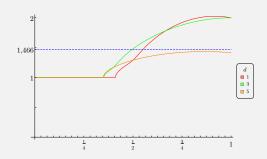


A pseudo-Anosov in B_6 acting trivially on homology (Brown).

Examples: Plots of spectral radii

For $\varphi \in B_n$, consider the functions $\mathrm{sr}_d(\varphi): [0,1] \to \mathbb{R}_+$

 $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral\ radius\ of\ } \eta_A^{n,d}(\varphi) \operatorname{\ at\ } q = A^4 = \exp(\pi i x).$



Small stretch factor, $\sigma_2^{-2}(\sigma_1\cdots\sigma_6)^2\in B_7$ (non-homological).

Concrete levels

Theorem (Masbaum, '99)

Quantum representations have elements of infinite order for all levels k, except perhaps for k=1,2,4,8.

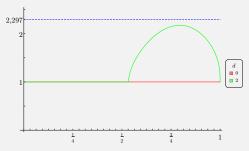
Proposition

Quantum representations have infinite order elements at level k=8 as well.

Examples: Plots of spectral radii

For $\varphi \in \mathcal{B}_n$, consider the functions $\mathrm{sr}_d(\varphi): [0,1] o \mathbb{R}_+$

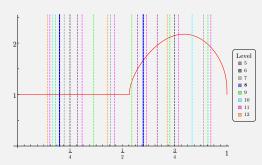
 $\operatorname{sr}_d(\varphi)(x) = \operatorname{spectral}$ radius of $\eta_A^{n,d}(\varphi)$ at $q = A^4 = \exp(\pi i x)$.



Small stretch factor, $\sigma_1\sigma_2\sigma_3^{-1}\in B_4$ (non-homological, Lanneau–Thiffeault).

Concrete levels

We can read off at which levels, orders become infinite.



Plot for d=0, $\sigma_1\sigma_2\sigma_3^{-1}\in B_6$; bold line is for SU(2) level k=8.

A family of homological pseudo-Anosovs

Example (Penner)

- ▶ Assume n is even, and let $\sigma_1, \ldots, \sigma_{n-1}$ be the standard generators of B_n .
- \blacktriangleright Take any word φ in the generators where the signs of powers correspond to the parity of the index.
- ▶ For example: n = 6, $\varphi = \sigma_1^2 \sigma_2^{-4} \sigma_3^5 \sigma_4^{-10} \sigma_5^{60}$.
- ▶ Suppose that each generator appears at least once in the word. Then φ is a homological pseudo-Anosov.