Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures

Quantum invariants of torus bundles and their asymptotics Barcelona 2012

Søren Fuglede Jørgensen Joint with Jørgen Ellegaard Andersen

Centre for Quantum Geometry of Moduli Spaces

April 27th 2012

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction and motivation •00	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- Define the Chern–Simons functional CS : $\mathcal{A}
 ightarrow \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation •00	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = \frac{1}{8\pi^2} \int_M \mathrm{tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) − CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction and motivation •00	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

For g ∈ G, we have CS(g*A) - CS(A) ∈ Z, and we can consider

 $\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$

Introduction and motivation •00	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
Notation			

- Let G = SU(N), and let M be an (oriented connected framed) closed 3-manifold.
- Let A be the space of connections in G × M → M, and let G be the group of gauge transformations.
- \bullet Define the Chern–Simons functional CS : $\mathcal{A} \to \mathbb{R}$ by

$$\mathsf{CS}(A) = rac{1}{8\pi^2} \int_M \mathsf{tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A).$$

• For $g \in \mathcal{G}$, we have $CS(g^*A) - CS(A) \in \mathbb{Z}$, and we can consider

$$\mathsf{CS}:\mathcal{A}/\mathcal{G}\to\mathbb{R}/\mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let $k \in \mathbb{N}$ (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

Witten '89: This defines a topological invariant of closed 3-manifolds.

Main question

What does $\int_{\mathcal{A}/\mathcal{G}} \mathcal{D}A$ mean?

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Witten '89: This defines a topological invariant of closed 3-manifolds.

What does $\int_{\mathcal{A}/\mathcal{G}} \mathcal{D}\mathcal{A}$ mean

 Let k ∈ N (called the *level*) and define the *Chern–Simons* partition function

$$Z_k^{ ext{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A \in \mathbb{C}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Witten '89: This defines a topological invariant of closed 3-manifolds.

Main question

What does $\int_{\mathcal{A}/\mathcal{G}} \mathcal{D}A$ mean?

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
A nossible and	Mer		

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

(日)

Goal of this talk

Describe $Z_k(M)$ in the case where M is a mapping torus.

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
A nossible and	wer		

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

 $Z_k^{\rm phys}(M)=Z_k(M).$

Goal of this talk

Describe $Z_k(M)$ in the case where M is a mapping torus.

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
A nossible and	wer		

Theorem (Reshetikhin–Turaev, 1991)

One can construct a topological invariant Z_k of 3-manifolds, called the quantum invariant, which behaves under gluing (or surgery) the way Z_k^{phys} is supposed to do.

Conjecture

For a closed oriented 3-manifold M,

$$Z_k^{\rm phys}(M)=Z_k(M).$$

Goal of this talk

Describe $Z_k(M)$ in the case where M is a mapping torus.

TQFTs and quantum representations $\bullet \circ$

Construction intermezzo

Results and conjectures

Topological quantum field theory

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Z_k is part of a 2 + 1-dimensional topological quantum field theory (Z_k, V_k) :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

Topological quantum field theory

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topological quantum field theory

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topological quantum field theory

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

Topological quantum field theory

Construction intermezzo

Results and conjectures

Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi : \Sigma \to \Sigma$ be a diffeomorphism and consider the *mapping* cylinder and the *mapping torus*

$$\begin{split} \mathcal{M}_{\varphi} &= \Sigma \times [0, \frac{1}{2}] \cup_{\varphi} \Sigma \times [\frac{1}{2}, 1] \\ \mathcal{T}_{\varphi} &= \Sigma \times [0, 1] / ((x, 0) \sim (\varphi(x), 1)) \end{split}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k: MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goa

Describe $\rho_k(f)$ for $f \in MCG(\Sigma)$.

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} \mathcal{M}_arphi &= \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ \mathcal{T}_arphi &= \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)). \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k: MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goa

Describe
$$\rho_k(f)$$
 for $f \in MCG(\Sigma)$.

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} &\mathcal{M}_arphi = \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ &\mathcal{T}_arphi = \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)) \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k: MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goa

Describe
$$\rho_k(f)$$
 for $f \in \mathsf{MCG}(\Sigma)$

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

Quantum representations

The data (Z_k, V_k) satisfies a number of axioms.

Example

Let $\varphi:\Sigma\to\Sigma$ be a diffeomorphism and consider the mapping cylinder and the mapping torus

$$egin{aligned} &\mathcal{M}_arphi = \Sigma imes [0, rac{1}{2}] \cup_arphi \Sigma imes [rac{1}{2}, 1] \ &\mathcal{T}_arphi = \Sigma imes [0, 1]/((x, 0) \sim (arphi(x), 1)) \end{aligned}$$

Then $Z_k(M_{\varphi}): V_k(\Sigma) \to V_k(\Sigma)$ depend on φ only up to isotopy. Define the quantum representations $\rho_k: MCG(\Sigma) \to Aut(V_k(\Sigma))$ by $\rho_k([\varphi]) = Z_k(M_{\varphi})$. Furthermore, $Z_k(M_{\varphi}) = V_k(\varphi)$ and $Z_k(T_{\varphi}) = tr Z_k(M_{\varphi}) = tr \rho_k([\varphi])$.

Revised goal

Describe $\rho_k(f)$ for $f \in MCG(\Sigma)$.

Introduction and motivation	TQFTs and quantum representations 00	Construction intermezzo ●○	Results and conjectures
A Dehn twist			

Figure: The Dehn twist t_{γ} about a curve γ .

TQFTs and quantum representations

Construction intermezzo ⊙● Results and conjectures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Dehn–Lickorish theorem

Theorem (Dehn-Lickorish)

The mapping class group $MCG(\Sigma)$ is generated by a certain finite set of Dehn twists about curves in Σ .

Figure: The Dehn-Lickorish generators in a genus 3 surface.

Introduction	and	

Construction intermezzo

Results and conjectures

A first example

Example

Let
$$f = id \in MCG(\Sigma_g)$$
, $G = SU(2)$. Then

$$egin{aligned} Z_k(\mathcal{T}_{\mathsf{id}}) &= Z_k(\Sigma_g imes S^1) = \mathsf{tr}\,
ho_k(\mathsf{id}) = \dim V_k(\Sigma_g) \ &= \left(rac{k+2}{2}
ight)^{g-1} \sum_{j=1}^{k+1} \left(\sin^2 rac{j\pi}{k+2}
ight)^{1-g} \in \mathbb{N}. \end{aligned}$$

This is the Verlinde formula. For example,

dim
$$V_k(S^2) = 1$$
,
dim $V_k(S^1 \times S^1) = k + 1$,
dim $V_k(\Sigma_2) = \frac{1}{6}(k+1)(k+2)(k+3)$.

Introduction	and	motivation

Construction intermezzo

Results and conjectures •00000000

A first example

Example

Let
$$f = id \in MCG(\Sigma_g)$$
, $G = SU(2)$. Then

$$egin{aligned} Z_k(\mathcal{T}_{\mathsf{id}}) &= Z_k(\Sigma_{\mathscr{G}} imes S^1) = \mathsf{tr} \,
ho_k(\mathsf{id}) = \dim V_k(\Sigma_{\mathscr{G}}) \ &= \left(rac{k+2}{2}
ight)^{\mathscr{g}-1} \sum_{j=1}^{k+1} \left(\sin^2 rac{j\pi}{k+2}
ight)^{1-\mathscr{g}} \in \mathbb{N}. \end{aligned}$$

This is the Verlinde formula. For example,

$$\dim V_k(S^2) = 1,$$

 $\dim V_k(S^1 imes S^1) = k + 1,$
 $\dim V_k(\Sigma_2) = rac{1}{6}(k+1)(k+2)(k+3).$

Introduction 000	and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conje ⊙●○○○○○○○
٨	1	1		

A second example

Example

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100

ectures

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
A second exam	nple		

Example

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo 00	Results and conjectures ○●○○○○○○○
A cocond avan			

A second example

Example

Let γ in $S^1 \times S^1$ be non-trivial, and let t_{γ} be the Dehn twist about γ . The SU(2)-invariants $Z_k(T_{t_{\gamma}})$ behave as follows:

Figure: Plots of $Z_k(T_{t_{\gamma}}) \in \mathbb{C}$ for k = 1, ..., 100

Introduction 000	and motivation	TQFTs and quantum	representations	Construction intermezzo 00	Results and conjectures

Asymptotic expansion conjecture

Recall that the partition function looked like

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a'_j \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2}\right)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
Asymptotic exp	pansion conjecture		

Recall that the partition function looked like

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a_j^l \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2} \right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction and motivation	TQFTs and quantum representations 00	Construction intermezzo	Results and conjectures
Asymptotic exp	pansion conjecture		

Recall that the partition function looked like

$$Z_k^{\mathrm{phys}}(M) = \int_{\mathcal{A}/\mathcal{G}} e^{2\pi i k \operatorname{CS}(A)} \mathcal{D}A.$$

Let \mathcal{M} be the moduli space of flat connections on a 3-manifold M, and let $0 = c_0, c_1, \ldots, c_n$ be the values of CS on \mathcal{M} .

Conjecture (The asymptotic expansion conjecture)

There exist $d_j \in \frac{1}{2}\mathbb{Z}$, $b_j \in \mathbb{C}$, $a'_j \in \mathbb{C}$ for j = 0, ..., n, $l \in \mathbb{N}_0$ such that $Z_k(M)$ has the asymptotic expansion

$$Z_k(M) \sim_{k \to \infty} \sum_{j=0}^n e^{2\pi i k c_j} k^{d_j} b_j \left(1 + \sum_{l=1}^\infty a_j^l k^{-l/2} \right)$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

The example revisited

$$Z_{k-2}(T_{t_{\gamma}}) = e^{\frac{\pi i}{2k}} \left(\sqrt{k/2} e^{-\pi i/4} e^{2\pi i k 0} - \frac{e^{2\pi i k 3/4}}{2} - \frac{1}{2} \right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo 00	Results and conjectures
Theorems			

Theorem (Jeffrey, '92)

The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ with |tr(f)| > 2.

Theorem (Andersen, FJ)

The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2,\mathbb{Z})$ has trace $|tr(f)| \leq 2$.

Theorem (Andersen '95, Andersen–Himpel '11)

The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo 00	Results and conjectures
Theorems			

Theorem (Jeffrey, '92)

The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ with |tr(f)| > 2.

Theorem (Andersen, FJ)

The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ has trace $|tr(f)| \leq 2$.

Theorem (Andersen '95, Andersen–Himpel '11)

The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order.

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo 00	Results and conjectures
Theorems			

Theorem (Jeffrey, '92)

The AEC holds for every mapping torus T_f of a torus diffeomorphism $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ with |tr(f)| > 2.

Theorem (Andersen, FJ)

The AEC holds for T_f , where $f \in MCG(S^1 \times S^1) \cong SL(2, \mathbb{Z})$ has trace $|tr(f)| \leq 2$.

Theorem (Andersen '95, Andersen–Himpel '11)

The AEC holds for $f \in MCG(\Sigma_g)$, $g \ge 2$, when f is finite order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

TQFTs and quantum representations

Construction intermezzo

Results and conjectures

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary of torus bundles

Table: Summary of phases and growth rates of quantum invariants of torus bundles.

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures 000000●00

Pretty pictures

Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 2, G = SU(2).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo 00	Results and conjectures
Pretty pictures			

Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 3, G = SU(2).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の久()

Introduction	and	

Construction intermezzo

Results and conjectures

Pretty pictures

Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 4, G = SU(2).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	and	

Construction intermezzo

Results and conjectures

Pretty pictures

Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 5, G = SU(2).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction	and	

Construction intermezzo

Results and conjectures

Pretty pictures

Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 2, m = 1, G = SU(2).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

TQFTs and quantum representations

Construction intermezzo

(日)

ж

Results and conjectures

Pretty pictures

Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 1, G = SU(3).

TQFTs and quantum representations

Construction intermezzo

<ロ> (日) (日) (日) (日) (日)

э

Results and conjectures

Pretty pictures

Figure: Plots of $Z_k(T_{t_{\gamma}^m})$ for g = 1, m = 1, G = SU(4).

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
Mapping tori v	vith links		

- Assume that *M* contains a framed link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*).
- Consider

$$Z_k^{\rm phys}(M,L,R) = \int_{\mathcal{A}_P/\mathcal{G}_P} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_A(L_i))) \exp(2\pi i k \operatorname{CS}(A)) \mathcal{D}A.$$

• Again, there is a corresponding mathematical invariant $Z_k(M, L)$, components of L labelled by elements of $\Lambda = P_k(\mathfrak{sl}(N))$.

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures 000000000
Mapping tori v	vith links		

- Assume that *M* contains a framed link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*).
- Consider

$$Z_k^{\rm phys}(M,L,R) = \int_{\mathcal{A}_P/\mathcal{G}_P} \prod_i {\rm tr}(R_i({\rm hol}_A(L_i))) \exp(2\pi i k \operatorname{CS}(A)) \mathcal{D}A.$$

• Again, there is a corresponding mathematical invariant $Z_k(M, L)$, components of L labelled by elements of $\Lambda = P_k(\mathfrak{sl}(N))$.

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures 0000000€0
Mapping tori v	vith links		

- Assume that *M* contains a framed link *L*, and choose for every component *L_i* of *L* a finite dimensional representation *R_i* of *G* = SU(*N*).
- Consider

$$Z_k^{\mathrm{phys}}(M,L,R) = \int_{\mathcal{A}_P/\mathcal{G}_P} \prod_i \operatorname{tr}(R_i(\operatorname{hol}_A(L_i))) \exp(2\pi i k \operatorname{CS}(A)) \mathcal{D}A.$$

• Again, there is a corresponding mathematical invariant $Z_k(M, L)$, components of L labelled by elements of $\Lambda = P_k(\mathfrak{sl}(N))$.

Introduction and motivation	TQFTs and quantum representations	Construction intermezzo	Results and conjectures
Thanks			

... for listening!

