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Notation

Let G = SU(N), and let M be an (oriented connected framed)
closed 3-manifold.
Let A be the space of connections in G ×M → M, and let G
be the group of gauge transformations.
Define the Chern–Simons functional CS : A → R by

CS(A) =
1

8π2

∫
M
tr(A ∧ dA +

2
3A ∧ A ∧ A).

For g ∈ G, we have CS(g∗A)− CS(A) ∈ Z, and we can
consider

CS : A/G → R/Z
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The Chern–Simons partition function

Let k ∈ N (called the level) and define the Chern–Simons
partition function

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA ∈ C.

Witten ’89: This defines a topological invariant of closed
3-manifolds.
Main question
What does

∫
A/G DA mean?
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A possible answer

Theorem (Reshetikhin–Turaev, 1991)
One can construct a topological invariant Zk of 3-manifolds, called
the quantum invariant, which behaves under gluing (or surgery)
the way Zphys

k is supposed to do.

Conjecture
For a closed oriented 3-manifold M,

Zphys
k (M) = Zk(M).

Goal of this talk
Describe Zk(M) in the case where M is a mapping torus.
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Topological quantum field theory

Reshetikhin and Turaev proved that the invariant Zk is part of a
2 + 1-dimensional topological quantum field theory (Zk ,Vk):
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Quantum representations
The data (Zk ,Vk) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a diffeomorphism and consider the mapping
cylinder and the mapping torus

Mϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Tϕ = Σ× [0, 1]/((x , 0) ∼ (ϕ(x), 1)).

Then Zk(Mϕ) : Vk(Σ)→ Vk(Σ) depend on ϕ only up to isotopy.
Define the quantum representations ρk : MCG(Σ)→ Aut(Vk(Σ))
by ρk([ϕ]) = Zk(Mϕ). Furthermore, Zk(Mϕ) = Vk(ϕ) and
Zk(Tϕ) = trZk(Mϕ) = tr ρk([ϕ]).

Revised goal
Describe ρk(f ) for f ∈ MCG(Σ).



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

Quantum representations
The data (Zk ,Vk) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a diffeomorphism and consider the mapping
cylinder and the mapping torus

Mϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Tϕ = Σ× [0, 1]/((x , 0) ∼ (ϕ(x), 1)).

Then Zk(Mϕ) : Vk(Σ)→ Vk(Σ) depend on ϕ only up to isotopy.
Define the quantum representations ρk : MCG(Σ)→ Aut(Vk(Σ))
by ρk([ϕ]) = Zk(Mϕ). Furthermore, Zk(Mϕ) = Vk(ϕ) and
Zk(Tϕ) = trZk(Mϕ) = tr ρk([ϕ]).

Revised goal
Describe ρk(f ) for f ∈ MCG(Σ).



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

Quantum representations
The data (Zk ,Vk) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a diffeomorphism and consider the mapping
cylinder and the mapping torus

Mϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Tϕ = Σ× [0, 1]/((x , 0) ∼ (ϕ(x), 1)).

Then Zk(Mϕ) : Vk(Σ)→ Vk(Σ) depend on ϕ only up to isotopy.
Define the quantum representations ρk : MCG(Σ)→ Aut(Vk(Σ))
by ρk([ϕ]) = Zk(Mϕ). Furthermore, Zk(Mϕ) = Vk(ϕ) and
Zk(Tϕ) = trZk(Mϕ) = tr ρk([ϕ]).

Revised goal
Describe ρk(f ) for f ∈ MCG(Σ).



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

Quantum representations
The data (Zk ,Vk) satisfies a number of axioms.

Example
Let ϕ : Σ→ Σ be a diffeomorphism and consider the mapping
cylinder and the mapping torus

Mϕ = Σ× [0, 1
2 ] ∪ϕ Σ× [1

2 , 1]

Tϕ = Σ× [0, 1]/((x , 0) ∼ (ϕ(x), 1)).

Then Zk(Mϕ) : Vk(Σ)→ Vk(Σ) depend on ϕ only up to isotopy.
Define the quantum representations ρk : MCG(Σ)→ Aut(Vk(Σ))
by ρk([ϕ]) = Zk(Mϕ). Furthermore, Zk(Mϕ) = Vk(ϕ) and
Zk(Tϕ) = trZk(Mϕ) = tr ρk([ϕ]).

Revised goal
Describe ρk(f ) for f ∈ MCG(Σ).



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

A Dehn twist

Figure: The Dehn twist tγ about a curve γ.
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The Dehn–Lickorish theorem

Theorem (Dehn–Lickorish)
The mapping class group MCG(Σ) is generated by a certain finite
set of Dehn twists about curves in Σ.

Figure: The Dehn–Lickorish generators in a genus 3 surface.
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A first example

Example
Let f = id ∈ MCG(Σg ), G = SU(2). Then

Zk(Tid) = Zk(Σg × S1) = tr ρk(id) = dimVk(Σg )

=

(k + 2
2

)g−1 k+1∑
j=1

(
sin2 jπ

k + 2

)1−g
∈ N.

This is the Verlinde formula. For example,

dimVk(S2) = 1,
dimVk(S1 × S1) = k + 1,

dimVk(Σ2) =
1
6(k + 1)(k + 2)(k + 3).
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A second example

Example
Let γ in S1 × S1 be non-trivial, and let tγ be the Dehn twist about
γ. The SU(2)-invariants Zk(Ttγ ) behave as follows:

1 2 3 4 5

-5

-4

-3

-2

-1

Figure: Plots of Zk(Ttγ ) ∈ C for k = 1, . . . , 100
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Asymptotic expansion conjecture

Recall that the partition function looked like

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA.

LetM be the moduli space of flat connections on a 3-manifold M,
and let 0 = c0, c1, . . . , cn be the values of CS onM.

Conjecture (The asymptotic expansion conjecture)
There exist dj ∈ 1

2Z, bj ∈ C, al
j ∈ C for j = 0, . . . , n, l ∈ N0 such

that Zk(M) has the asymptotic expansion

Zk(M) ∼k→∞

n∑
j=0

e2πikcjkdjbj

(
1 +

∞∑
l=1

al
jk−l/2

)



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

Asymptotic expansion conjecture

Recall that the partition function looked like

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA.

LetM be the moduli space of flat connections on a 3-manifold M,
and let 0 = c0, c1, . . . , cn be the values of CS onM.

Conjecture (The asymptotic expansion conjecture)
There exist dj ∈ 1

2Z, bj ∈ C, al
j ∈ C for j = 0, . . . , n, l ∈ N0 such

that Zk(M) has the asymptotic expansion

Zk(M) ∼k→∞

n∑
j=0

e2πikcjkdjbj

(
1 +

∞∑
l=1

al
jk−l/2

)



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

Asymptotic expansion conjecture

Recall that the partition function looked like

Zphys
k (M) =

∫
A/G

e2πik CS(A)DA.

LetM be the moduli space of flat connections on a 3-manifold M,
and let 0 = c0, c1, . . . , cn be the values of CS onM.

Conjecture (The asymptotic expansion conjecture)
There exist dj ∈ 1

2Z, bj ∈ C, al
j ∈ C for j = 0, . . . , n, l ∈ N0 such

that Zk(M) has the asymptotic expansion

Zk(M) ∼k→∞

n∑
j=0

e2πikcjkdjbj

(
1 +

∞∑
l=1

al
jk−l/2

)



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

The example revisited
1 2 3 4 5

-5

-4

-3

-2

-1

Zk−2(Ttγ ) = e
πi
2k

(√
k/2e−πi/4e2πik0 − e2πik3/4

2 − 1
2

)
.
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Theorems

Theorem (Jeffrey, ’92)
The AEC holds for every mapping torus Tf of a torus
diffeomorphism f ∈ MCG(S1 × S1) ∼= SL(2,Z) with |tr(f )| > 2.

Theorem (Andersen, FJ)
The AEC holds for Tf , where f ∈ MCG(S1 × S1) ∼= SL(2,Z) has
trace |tr(f )| ≤ 2.

Theorem (Andersen ’95, Andersen–Himpel ’11)
The AEC holds for f ∈ MCG(Σg ), g ≥ 2, when f is finite order.
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Summary of torus bundles

f ∈ SL(2,Z) {cj} of Tf {dj} of Tf(
±1 0
0 ±1

)
{0} {1}(

±1 −b
0 ±1

)
, b 6= 0 even { j2

b | j = 0, . . . , |b|2 } {1
2}(

±1 −b
0 ±1

)
, b odd { j2

b | j = 0, . . . , |b|−1
2 } ∪ {−

b
4} {1

2} ∪ {0}(
a b
c d

)
, |a + d | 6= 2

{
−cγ2+(a−d)γβ+bβ2

d+a±2

∣∣∣∣∣ 0 ≤ β < c,
0 < γ ≤ |a + d ± 2|

}
{0}

Table: Summary of phases and growth rates of quantum invariants of
torus bundles.



Introduction and motivation TQFTs and quantum representations Construction intermezzo Results and conjectures

Pretty pictures
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Figure: Plots of Zk(Ttm
γ

) for g = 1,m = 2, G = SU(2).
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Pretty pictures
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Figure: Plots of Zk(Ttm
γ

) for g = 1,m = 3, G = SU(2).
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Pretty pictures
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Figure: Plots of Zk(Ttm
γ

) for g = 1,m = 4, G = SU(2).
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Pretty pictures
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Figure: Plots of Zk(Ttm
γ

) for g = 1,m = 5, G = SU(2).
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Pretty pictures
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Figure: Plots of Zk(Ttm
γ

) for g = 2,m = 1, G = SU(2).
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Pretty pictures
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Figure: Plots of Zk(Ttm
γ

) for g = 1,m = 1, G = SU(3).
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Pretty pictures
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Figure: Plots of Zk(Ttm
γ

) for g = 1,m = 1, G = SU(4).
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Mapping tori with links

Assume that M contains a framed link L, and choose for every
component Li of L a finite dimensional representation Ri of
G = SU(N).
Consider

Zphys
k (M, L,R) =

∫
AP/GP

∏
i
tr(Ri (holA(Li ))) exp(2πik CS(A))DA.

Again, there is a corresponding mathematical invariant
Zk(M, L), components of L labelled by elements of
Λ = Pk(sl(N)).
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Thanks ...

... for listening!
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