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My research revolves around the mathematical field that has come to be known as quantum
topology. Still only loosely defined, this field generally involves the mathematical study of
Witten’s quantum Chern–Simons theory; a quantum field theory whose relation with knot
theory [25] has led to a number of developments in topology and geometry over the last 20
years. In this research statement I will discuss the mathematics arising from Chern–Simons
theory, give an overview of my previous research and list several open problems, some of
which I am already studying and several that I hope to study in the future. To me, one of the
most interesting open problems in Chern–Simons theory and indeed in mathematical physics in
general is making mathematical sense of the a priori ill-defined path integrals arising. Likewise,
to me, one of the most interesting aspects – as far as applications of Chern–Simons theory are
concerned – is its central role in the construction of the theoretical framework of topological
quantum computation, cf. [14], [15], and [13].

1. Introduction

Let in the following G be a simply connected compact Lie group and let M be a closed
oriented 3-manifold containing a framed link L. Let P → M be a principal G-bundle, let AP
denote the space of all connections in P , let GP denote the space of gauge transformations of
P acting on AP . Recall that the Chern–Simons action defines a map

CS : AP /GP → R/Z.

Let now k ∈ Z>0 be a level and choose for every component Li of L a finite-dimensional
representation Ri of G. Let holA(Li) ∈ G denote the holonomy of a connection A about a
component Li of L. We then define the (physical) Chern–Simons partition function

Zphys
k,G (M,L) =

∫
AP /GP

∏
i

tr(Ri(holA(Li))) exp(2πikCS(A))DA.(1)

Witten argued in [25] that this expression defines a topological invariant. Much of quantum
topology is inspired by the interpretation of the above integral, which a priori makes no sense
from a mathematical point of view as the measure DA is not defined. Attemps to make out of it
a rigorous definition quickly arose for a number of different groups G, using the representation
theory of quantum groups in [21], [22] and [23] (see also [24]) and using the skein theory of the
Kauffman bracket and HOMFLY polynomial, [10], [9], [11], [8]. Let Zk(M,L) = Zk,G(M,L)
denote the mathematically defined invariant, which we refer to as the quantum invariant.

One of the main properties of the quantum invariants is their behaviour under cutting and
gluing along surfaces embedded in the 3-manifold under scrutiny. More precisely, the invariants
extend to invariants of manifolds with boundary and define a TQFT, [25], [7]: a functor from
the category of 3-dimensional 2-framed cobordisms between surfaces to the category of complex
vector spaces. Concretely, to an oriented surface Σ, we associate a vector space Vk(Σ) depending
on the level k, and to a compact oriented 3-manifold M with boundary ∂M = Σ1 t Σ2, we
associate a linear map Zk(M,L) : Vk(Σ1) → Vk(Σ2). In particular, for a homeomorphism
f : Σ → Σ, the quantum invariant of the mapping cylinder of f , viewed as a cobordism Cf
from Σ to itself, defines a (projective) linear isomorphism ρk(f) = Zk(Cf ) : Vk(Σ) → Vk(Σ).
This descends to a projective representation ρk : MCG(Σ) → PVk(Σ) is called the level k
quantum representation of the mapping class group MCG(Σ). The link L may intersect the
surface Σ in a number of marked points labelled by the additional data of the representations
Ri; the mapping classes in question will be assumed to preserve this data, and the above
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described functor will depend non-trivially on it as well; we exclude this dependence from the
notation to simplify the exposition in this research statement.

By the properties of TQFTs, for a mapping torus Mf of f : Σ→ Σ, the quantum invariant
is the character of the quantum representation, Zk(Mf ) = tr ρk(f), and similarly, knowing a
Heegaard decomposition of a 3-manifold M breaks down the study of Zk(M) to that of the
quantum representations.

Now, the quantum representations admit a number of different constructions, all of which
are known to be equivalent: the vector spaces Vk(Σ) can be defined as certain Hom-modules
of quantum groups and in the setup of skein theory, the TQFTs instead admit a combinatorial
description allowing for algorithmic calculations [20]. For now, we focus on a more geometric
construction: a complex structure on the surface Σ induces a complex structure σ on the
corresponding moduli space M(Σ) of flat G-connections on Σ whose behaviour near marked
points are determined by the Ri, and one here takes Vk(Σ) to be the space of holomorphic
sections H0(M(Σ)σ,Lkσ) of the k’th power of the Chern–Simons line bundle L →M(Σ) with
respect to this complex structure; the dependence on the complex structure is encoded in the
Hitchin connection ∇ (see [16]) in the bundle over the Teichmüller space of Σ whose fiber over
a complex structure σ is H0(M(Σ)σ,Lkσ).

2. Asymptotic analysis of the quantum invariants

The rigorous definition of Zk(M) relies a surgery description of M , and so calculations have
generally been done for manifolds with particularly simple surgery description, and the precise
geometric content of Zk has largely remained an open question; one I hope to explore. This,
for instance, is built into the well-known Volume Conjecture, [19], stating that a particular
evaluation of the Jones polynomial of a knot in a very precise way determines the volume of
its complement in S3.

Another open question1 in the field is the so-called Asymptotic Expansion Conjecture (AEC):

From its definition, it is hard to relate the quantum invariant Zk to its physical heritage Zphys
k

and doing so exactly is impossible as only one is rigourously defined. However, via the method
of stationary phase, one heuristically obtains an expansion for (1) for large values of the level k,
which may then be compared to similar expansions for the mathematical invariant Zk. Doing
so, one ends up at the following conjecture, where we consider the invariants Zk,G arising when
G = SU(N) and let M(M) denote the moduli space of flat SU(N)-connections on M .

Conjecture 2.1 (Asymptotic expansion conjecture (AEC)). Let M be a closed oriented 3-
manifold, let r = k+N , and let {c0 = 0, . . . , cm} be the values of the Chern–Simons action on
M(M). Then there exist dj ∈ 1

2Z, bj ∈ C, and alj ∈ C for j = 0, . . . ,m, l = 1, 2, . . . such that

Zk(M) ∼k→∞
m∑
j=0

e2πircjrdjbj

(
1 +

∞∑
l=1

aljr
−l/2

)
,

where ∼k→∞ denotes an asymptotic expansion in the Poincaré sense (see [5]).

It is known that an expansion as in this conjecture is unique and that the constants dj , bj , a
l
j

therefore must be topological invariants of Zk(M), and one might go on to formulate conjectures
for geometric interpretations of these. For more details, see [1, Sect. 7,2].

The study of this conjecture for particular mapping tori of torus homeomorphisms was carried
out by Andersen and myself in [5] (see also [18], [17]), tying the story for torus bundles, and it

1According to MathOverflow, it is currently a close race:
https://mathoverflow.net/questions/104326/motivation-and-unsolved-problems-of-tqft

https://mathoverflow.net/questions/104326/motivation-and-unsolved-problems-of-tqft
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has been studied for a large number of different families of 3-manifolds by various authors (see
[5, Sect. 1.2] for a recent survey).

In [18, Sect. 5.5] we outline the relevant analysis to generalize the methods to [5] to the
larger family of 3-manifolds consisting of mapping tori of Dehn twists in higher genus surfaces.

Another interesting question is concerned with the asymptotics of the observables of Witten’s
theory, namely what happens when the manifold is allowed to contain a link L (compare again
with the Volume Conjecture); a study of this is the content of joint work with Andersen,
Himpel, McLellan, Martens, and myself [4]. More precisely, we set up the framework necessary
for using moduli space techniques to determine the asymptotics in the case of a surface with
marked points. We then study a version of the AEC in the case of a finite order mapping torus;
for these, many of the technical problems involving Kähler quantization of the relevant moduli
spaces become redundant, but actually understanding the geometric quantization in this case
is itself an interesting problem whose solution would shed light on the general AEC.

Finally, we note that some steps towards understanding the AEC for general mapping tori
has been carried out in [18, Sect. 6.2.1], the main result relating to mapping tori of homeomor-
phisms whose action on moduli space has isolated fixed points; we hope to expand this result
to a general study describing the asymptotics in terms of fixed point data.

3. The genus 0 case and surface dynamics

Of course, the study of the mapping class groups of surfaces is central in low-dimensional
topology, and in joint work with Jens Kristian Egsgaard, we have considered to which extent
the quantum representations can recover the properties of surface homeomorphisms; it is for
example well-known that the collection of quantum representations,

⊕
k ρk is faithful [2] (for

particular marked point data), and a preprint by Andersen [3] shows that they can also be used
to recover the Nielsen–Thurston classification of mapping classes, but it would be interesting to
see exactly how much information one is able to recover. For instance, in [5] we show that for
torus homeomorphisms, by taking particular subsequences of the ρk, one recovers in a precise
way the topological entropies of Anosov homeomorphisms. This should be seen in the context
of the so-called AMU conjecture.

Conjecture 3.1 ([6]). Let Σ be a surface with χ(Σ), and let ϕ be a pseudo-Anosov mapping
class. Then there exists k0 ∈ Z>0 such that ρk(ϕ) has infinite order for k > k0.

As mentioned above, it is not clear if the quantum invariants are sensitive to the geometry
of the 3-manifolds, and just as the volume conjecture can be taken as a statement that they
are indeed, the AMU conjecture gives a similar statement for the quantum representations.
Concretely, the authors of [6] augment their conjecture by asking if it is possible to extract the
entropy of a pseudo-Anosov from its quantum representation.

The authors prove the conjecture in the case of a sphere with five marked points labelled by
certain SU(N)-representations. The resulting vector spaces Vk(S

2) are 2-dimensional and in
the context of quantum computation, they are exactly the spaces representing single qubits. In
this context, the quantum representations ρk define the appropriate set of quantum gates, and
roughly speaking, the modular properties of the underlying TQFT define a way to represent a
general collection of qubits by picking out certain subspaces of the vector spaces obtained by
adding marked points.

In [12] we show that the methods of [6] generalize to spheres with any number of marked
points, labelled by a set of SU(N)-representations appropriate for quantum computation, and
obtain as a result a proof of the AMU conjecture for pseudo-Anosovs whose singularity data is
of a particular type. For the future, we hope to expand our results to general pseudo-Anosovs
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on spheres. Once again, there is good reason to expect moduli space techniques to provide the
necessary tools for this [18].

Finally, remark that in the genus 0 case, the AMU conjecture is closely related to the open
question of faithfulness of the Jones representation which in turn is directly related to the open
question of whether or not the Jones polynomial is an unknot detector. It is therefore natural
for me to hope to shed light on these questions in the future as well.
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