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SØREN FUGLEDE JØRGENSEN

These are notes for a lecture I gave at TIFR, Mumbai; I wrote them to keep track of what I
wanted to say more than anything, so please take them for what they are. Comments are very
welcome and may be sent to s@fuglede.dk.

1. Witten’s quantum Chern–Simons theory

These first two lectures are really the story of quantum topology; I will go all the way back to
its origin: Witten’s paper on Chern–Simons theory and the Jones polynomial (1989).

LetM be a closed, connected, and oriented 3-manifold. Let G = SU(N) (or in general, a simple,
simply-connected, and connected Lie group), and let g = Lie(G). Let A = A(M) be the space
of connections in the trivial G-bundle G ×M → M over M , i.e. A ∼= Ω1(M ; g); concretely, we
can think of an element of A as a skew-hermitian matrix of 1-forms that has trace 0. Let G be
the space of gauge transformations in this bundle, acting on A by pullback, i.e. G ∼= C∞(M,G).
Writing it like this, an element g ∈ G acts on a connection A by

g∗A = g−1Ag + g−1dg

Now, define the Chern–Simons action CS : A → R by

CS(A) = 1
8π2

ˆ
M

tr(dA ∧A+ 2
3A ∧A ∧A).

Here, the wedge product of two matrices of 1-forms should be interpreted as the combination of
matrix multiplication and wedge product. A calculation shows that CS defines a map CS : A/G →
R/Z.

Witten’s idea was to construct from this a topological invariant of the 3-manifold M . More
precisely, let k ∈ N, and put

Zk(M) =
ˆ
A/G

exp(2πikCS(A))DA.

Here’s a problem though: there’s no known measure DA which makes sense here, but by using
physics arguments, one is still able to manipulate the integral (typically called a path integral).

Assume now that ∂M = Σ 6= ∅, let A ∈ A(Σ)/G(Σ), let AA be the connections in A(M) that
restrict to A [drawing], and let G∂ be the gauge transformations that restrict to the identity on
the boundary. Then we can define

Zk(M)(A) =
ˆ
AA/G∂

exp(2πikCS(A′))DA′.

Here’s the kicker: as k grows large, the main contributions to this integral come from flat connec-
tions, and the (moduli) space of flat connections on a surface up to gauge is finite-dimensional (this
is also a moduli space of bundles). Then, Zk(M) is to be interpreted as a holomorphic section of
the k’th power of some line bundle over this moduli space, and there will be a finite-dimensional
space of such sections. This is a special feature for Chern–Simons theory among quantum field
theories which allows us to use rigorous mathematical arguments in manipulations of the path
integral.

2. Atiyah’s axioms for TQFT

Let’s try to axiomatize this, following Atiyah’s “Topological quantum field theory”: A (d+ 1)-
dimensional TQFT (Z, V ) over a field Λ associates to a closed oriented d-manifold Σ a finite-
dimensional vector space V (Σ) over Λ, and to an oriented (d+ 1)-manifold M an element Z(M) ∈
V (∂M), such that
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• If f : Σ → Σ′ is an orientation preserving diffeomorphism, then we have a linear iso-
morphism V (f) : V (Σ) → V (Σ′), such that V (f ◦ g) = V (f) ◦ V (g). If f extends to a
diffeomorphism f : M →M ′ with ∂M = Σ, ∂M ′ = Σ′, then V (f)(Z(M)) = Z(M ′).
• V (Σ with opposite orientation) = V (Σ)∗.
• V (∅) = Λ, Z(∅) = 1, Z(Σ× [0, 1]) = id ∈ V (Σ)⊗ V (Σ)∗ = Aut(V (Σ)).
• Gluing: V (Σ1 t Σ2) = V (Σ1) ⊗ V (Σ2), and if M = M1 ∪Σ3 M2 s.t. ∂M1 = Σ1 ∪ Σ3
and ∂M2 = Σ2 ∪ −Σ3, then Z(M) = 〈Z(M1), Z(M2)〉, in the dual pairing from V (Σ3)
[drawing].

Example 1. If M is closed, Z(M) ∈ C is a topological invariant of M .
If M = Σ× [0, 1]/(x, 0) ∼ (f(x), 1) is a mapping torus of a diffeomorphism f : Σ→ Σ [drawing],

then one can show from the axioms that Z(Mf ) = trV (f), so in this case, it suffices to understand
the two-dimensional part of the theory. In particular, if f = id, then Z(Mf ) = Z(M × S1) =
dimV (Σ).

One can also show from the axioms that V (f) depends only on f up to isotopy. Thus there is
a map MCG(Σ) = Diff(Σ)/isotopy → Aut(V (Σ)) which is typically called the quantum represen-
tation of MCG(Σ).

In fact, every closed oriented 3-manifold M has a Heegaard decomposition M = H ∪f −H,
where H is a handlebody, and f : Σ→ Σ some diffeomorphism. It then follows that

Z(M) = 〈Z(H), V (f)(Z(H))〉,

so in order to understand the invariant Z(M), one really only needs to understand the functor V ,
and the invariant Z on a single 3-manifold, the handlebody.

3. 3-dimensional TQFT

Let us now turn back to the case of interest: Witten’s 3-dimensional quantum field theory, which
supposedly fits into the framework of TQFT. Rigorous mathematical constructions of these that
emulate Witten’s construction in various ways quickly arose, the first of which were Reshetikhin and
Turaev’s construction using the representations theory of quantum groups. In modern language,
the 2-dimensional part of the (2 + 1)-dimensional TQFT is referred to as a modular functor and
by the above discussion, it often suffices to understand these. Notable constructions include the
following:

• The representation theory of the quantum group Uq(slN ) at a (k + N)’th root of unity,
q = exp(2πi/(k+N)) (Daniel will perhaps elaborate on this); here, V is obtained as certain
Uq(slN )-modules.

• The skein theory of the Jones/HOMFLYPT polynomial (due to Blanchet, Habegger, Mas-
baum, and Vogel); here, V is obtained as a quotient of a module of links (see below).

• Conformal field theory; here V is the space of vacua/conformal blocks.
• Geometric quantization of the moduli space M of flat connections on the surface; here
V = H0(M,Lk) for a prequantum line bundle L →M (Niels?).

It is worth emphasizing that these are all so different that they allow for techniques to be drawn
in from any of their underlying fields; moreover, the various constructions are understood to be
equivalent1, so that one may use any such techniques in parallel. In particular, each approach has
its own advantages: for instance, the first two have a highly combinatorial flavor – enough so that
computer implementation is readily available – while the fourth is well suited for studying large k
asymptotics.

3.1. Skein theory. Let’s be concrete and actually construct the TQFT for SU(2), following a
construction of Roberts of the skein theoretical TQFT: Define A = i exp( πi

2(k+2) ) ∈ C, and for
an oriented compact 3-manifold M , let K(M) be the complex vector space spanned by isotopy
classes of banded links (inclusions

⊔n
j=1 S

1 × I →M) in M modulo the local relation [drawing of
Kauffman bracket].

1The connection between the fourth and the first three is still a bit unclear when the surface contains marked
points; something I have not been talking about so far
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Since for a link in S3, all links may be resolved to a number of unknots, one finds thatK(S3) = C.
Now, let H and H ′ be standard handlebodies with ∂H = ∂H ′ = Σ. Then we can view S3 = H∪H ′
[drawing]. There then is a natural pairing

〈·, ·〉 : K(H)×K(H ′)→ K(S3) = C
given by taking the union of links [drawing]. By taking the left kernel of K(H) and right kernel of
K(H ′) with respect to this pairing, we obtain a non-degenerate pairing

〈·, ·〉 : V (Σ)× V ′(Σ)→ K(S3) = C.
Here we already have our vector space (which turns out to be finite-dimensional!), and Z(H) ∈
V (Σ) corresponds simply to the empty link in H. We now just need to define the action of the
mapping class group of Σ. It is a theorem due to Lickorish that this group is generated by a finite
set T ∪T ′ ⊆ MCG(Σ), where T consists of diffeomorphisms (Dehn twists) that extend over H and
similarly T ′ consists of diffeomorphisms that extend over H ′. For f ∈ T , we can therefore simply
let f act on K(H), which then in turn defines an automorphism of V (Σ). Likewise, for f ∈ T ′, f
acts naturally on V ′(Σ), so we can use the pairing to define V (f) ∈ Aut(V (Σ)) by

〈V (f)x, y〉 = 〈x, f−1.y〉.
Finally, if f ∈ MCG(Σ) is a word in f = f1 ◦ · · · ◦ fn with fi ∈ T ∪ T ′, we simply define

V (f) = V (f1) ◦ · · · ◦ V (fn).(1)
We are now done if we can show that this is actually well-defined, which turns out to almost be
the case.

Theorem 2 (Roberts). The V (f) of (1) depends only on the decomposition in T ∪ T ′ up to a
k-dependent root of unity.

Let us finally note that it turns out that there is no way to get around this root of unity (called
the anomaly of the TQFT), but there are several concrete descriptions of it that one uses instead.

3.2. Quantum invariants from surgery. In the above, we appealed to Heegaard decompositions
to cheat our way to quantum invariants Zk(M). Whereas reasonable, this is not quite how it was
done originally, neither by Reshetikhin and Turaev, nor by Blanchet, Habegger, Masbaum, and
Vogel. Instead, they defined the invariants as surgery invariants. Previously we have not talked
about why the invariants constructed actually have anything to do with Witten’s path integral. In
short, Witten noticed that under surgery, his invariants would behave in a particular way, which
may then be emulated and used as a building block for a mathematical construction.

Let us briefly describe how this construction goes: (integral) surgery associates to a banded
link in S3 a 3-manifold, which is obtained by removing a tubular neighbourhood of the link, and
gluing in a new torus according to the banded structure (consider one boundary component to be
the core of the solid torus removed and glue the meridinal curve from the new torus to the other
boundary component of the link, twisting everything about a bit).

Theorem 3 (Lickorish–Wallace, Kirby, Fenn–Rourke). Using surgery, there is a one-to-one corre-
spondence between 3-manifolds up to homeomorphism and banded links in S3 up to so-called Kirby
moves.

The strategy is now the following: one tries to define an invariant of banded links in S3 which
is invariant under Kirby moves. When this is the case, the above theorem may be then directly
applied to obtain a topological invariant of 3-manifolds.

For skein theory, this invariant of links is defined as follows: the coloured Jones polynomial Jm,
m ∈ N associates to a link L a Laurent polynomial Jm,L(q). Then, for every k, the average of the
first k coloured Jones polynomials, J1,L(q), . . . , Jk,L(q), does not change under Kirby moves if the
polynomials are evaluated at q = exp(2πi/(k + 2)).
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