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Disclaimer

These are notes from a course given by Richard Borcherds in 2010.1 They have been written and
TeX'ed during the lecture and some parts have not been completely proofread, so there are bound
to be a number of typos and mistakes that should be attributed to me rather than the lecturer.
Also, I've made these notes primarily to be able to look back on what actually happened myself,

1The course homepage is located at http://math.berkeley.edu/~reb/courses/256A/index.html � that probably

won't be true forever though.
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and to get experience with TeX'ing live. That being said, feel very free to send any comments and
or corrections to fuglede@imf.au.dk. Also, let me thank Yael Degany for proofreading large part
of these notes.

I chose not to include the �rst one and a half lecture in these notes. These were primarily about
various examples that, while clearly relevant and important examples, are somewhat cumbersome
to TeX, and I'm lazy. Also, Richard Borcherds more or less has these examples written out in detail
in his own lecture notes, currently available at http://math.berkeley.edu/~reb/courses/256A/
256A.pdf.

Second lecture, August 31st 2010

1 A�ne varieties

De�nition 1. A�ne space is de�ned to be kn (which we will also write An) for some �eld k.

Classically, the �eld k in question was taken to be the set of complex numbers. More generally,
we will consider some algebraically closed �eld of characteristic 0. It is also possible to consider
algebraic geometry in positive characteristic as was done by Weil or over a completely general �eld;
however, in the latter case, one runs into considerable trouble considering Q.

1.1 Algebraic sets and the Zariski topology

De�nition 2. An algebraic set is the set of common zeros in An for a set T of polynomials.

Obviously, ∅ and An are algebraic sets, and it is also easy to see, that the set of algebraic sets
is closed under intersection. It is also closed under �nite union: For two algebraic sets Y1 and Y2

the set Y1 ∪ Y2 is the set of zeros of polynomials t1t2, for t1 ∈ Y1,t2 ∈ Y2. In other words, the
algebraic sets are the closed sets of a topology on An called the Zariski topology.

Figure 1: Closed sets in A1 ×A1 and A2.

Example 3. For example, a non-zero polynomial in A1 is going to have a �nite set of zeros, and
therefore the closed sets of A1 are going to be �nite sets and all of A1. Likewise, the open sets will
be the empty set and all co�nite sets. In particular, this topology is not Hausdor� (if |k| =∞), as
any two sets will have non-trivial intersection.

An obvious question is whether A2 = A1 × A1 as is usually the case. This isn't true. Closed
sets in A1 ×A1 are �nite unions of vertical and horizontal lines and points and all of A1 ×A1 (see
Fig. 1). These sets will also be closed in A2, but besides those, A2 contains closed sets like the
one depicted in Fig. 1: A typical closed set in A2 is a �nite union of curves and points.

Example 4. We consider the so-called determinantal varieties; that is, the set of linear maps from
km to kn with rank less than or equal to r. For example, this could be the set of singular maps
kn → kn (as these have rank strictly less than n). Identify linear maps km → kn with elements of
kmn = Amn. Recall that the rank of a map is the largest r such that we can �nd a r× r-submatrix
with non-zero determinant. Such matrices are given by the vanishing of all (r+1)× (r+1)-minors.

In particular, the set of isomorphisms kn → kn is an open subset of kn
2

in the Zariski topology.
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Proposition 5. The Zariski topology on An is Noetherian. This is equivalent to every open set
being compact.

Proof. This follows from the fact that k[x1, . . . , xn] is Noetherian. This, on the other the hand,
follows from a theorem by Hilbert. Recall that the following are equivalent:

• A ring is Noetherian

• Every ideal is �nitely generated

• Every set of ideals has a maximal element

• Every increasing sequence of ideals stabilizes.

Using this, Hilbert proved that R Noetheriean implies R[x] Noetherian: Assume that I is an ideal
in R[X] and consider the ideal In of elements in I of degree less than or equal to n. This sequence
stabilizes and it is enough to check that I is generated by polynomials of degree at most m, and
that the polynomials of degree at most m constitute a �nitely generated ideal module R.

Third lecture, September 2nd 2010

Last lecture: We had Hilbert's theorem: Every ideal of k[x1, . . . , xn] is �nitely generated. A ring
is called Noetherian, if every ideal is �nitely generated.

Exercise 6. Show that if R is Noetherian, then so is R[[x]].

A topological space is called Noetherian, if it satis�es one of the following two equivalent
conditions:

1) Every set of closed subsets has a minimal element.

2) Every decreasing chain C1 ⊇ C2 ⊇ . . . of closed subsets is eventually constant.

(Compare this to the statements that every set of ideals has a maximal element, and that every
increasing chain of ideals is eventually constant, considered last lecture.)

We put the Zariski topology on An, which then becomes a Noetherian topological space. This
follows from Hilbert's theorem: Closed sets of An correspond to some ideals of k[x1, . . . , xn], and
larger closed sets correspond to smaller ideals.

Exercise 7. That a space is Noetherian is equivalent to every open set being compact.

If a space is Noetherian and Hausdor�, it must be �nite. Proof: The complement of a point is
open and thus compact, and in Hausdor� spaces, compact sets are closed, so a point is open, and
the topology is discrete. All discrete, compact spaces are �nite.

1.2 A�ne varieties

A non-empty set is called irreducible, if it is not a union of two proper closed subsets. This is
a stupid concept for Hausdor� spaces, as the only irreducible Hausdor� spaces are points. In a
Noetherian space, every closed set is a �nite union of irreducible closed sets. The proof uses what
is called Noetherian induction: The idea of Noetherian induction is to look for minimal closed
counterexamples; minimal closed sets exist when the space is Noetherian. So in our case, suppose
that C is a minimal closed subset, which is not a �nite union of irreducibles. Then C is not
irreducible, so C = C1 ∪ C2, Ci closed, and Ci ⊂ C. By minimality, Ci are both �nite unions of
irreducible closed sets, contradicting the assumption that C was not.

De�nition 8. An a�ne variety is an irreducible closed subset of An. (Problem: Look at the
set {x | x 6= 0 in A1} � this is not closed and therefore not an a�ne variety. In some sense, it is
isomophic to the hyperbola {(x, y) | xy = 1 in A2}, which is an a�ne variety. It would therefore
be nice, if the �rst set was a variety, and the de�nition will be modi�ed later on.)

3



Example 9. Look at the algebraic set {x2 + y2 + z2 = 0, xyz = 0}. If xyz = 0 then one of them
equal to 0; say x = 0. Then y2 + z2 = 0, so y + iz = 0 or y − iz = 0. So the set is a union of 6
lines x = 0, y = ±iz, y = 0, x = ±iz, z = 0, x = ±iy.
Example 10. Consider {xy = 1}. It looks as if this has 2 irreducible components. It has 2 connected
components in the Euclidean topology, but it is still irreducible in the Zariski topology (as xy − 1
can not be factored). Similarly, we have connected sets which are not irreducible: Take for example
{xy = 0}.

�Families� of irreducible varieties can have reducible �limits�.

Example 11. Consider {xy = z} (a saddle-like surface). Intersect this with varying hyperplanes
z = c. This gives us a family of plane curves xy = c. For c 6= 0, this is irreducible, but for c = 0,
it becomes reducible as a union of two lines.

1.3 The Lasker�Noether theorem

An algebraic set is a �nite union of irreducible algebraic sets. Before going on, we consider a
generalization, due to Lasker, for commutative rings (schemes, really). Lasker proved that any
ideal of k[x1, . . . , xn] is a �nite intersection of primary ideals: An ideal is called prime if xy ∈ I
implies x ∈ I or y ∈ I, and primary if xy ∈ I implies x ∈ I or yn ∈ I. For example, for Z, the prime
ideals are (0), (2), (3), . . . and the primary ideals are (0) or of the form (pn). For more general
rings, however, primary is not the same as the power of a prime. This re�nes the composition
of an algebraic set into irreducibles: Ideals give algebraic sets, and prime ideals give irreducible
algebraic sets. Di�erent ideals can give the same algebraic set though; for example, the ideals (x)
and (x2) have the same algebraic set, x = 0.

It turns out to be a good idea to change these de�nitions a little bit. Lasker focused on an
ideal I ⊂ R with I =

⋂
primary ideals. It turns out to be better to consider a module M = R/I.

For Noetherian rings, one can show that I is primary if and only if M has exactly one associated
prime. We say that a module M is coprimary if it has exactly one associated prime. Here, p is an
associated prime of a module M , if it is a prime ideal and the annihilator of some element of M .
For example, ifM is a �nitely generated module over Z, e.g. M = Zn0⊕Z5⊕Z7⊕Z133 . Associated
primes will be (0) if M contains Z and (p) if M contains some Zpn . Coprimary modules over Z
are Zn, Zpn1 ⊕ Zpn2 ⊕ · · · (modules where only one prime occurs).

Any non-zero �nitely generated module over a Noetherian ring has at least one associated
prime. Proof: The key idea of the proof is that if you take a maximal element of some set of
ideals, it has a strong tendency to be prime. So pick a maximal element I of the set of ideals that
are annihilators of a non-zero element of M . We want to show that I is prime. Suppose xy ∈ I
and that I annihilates m 6= 0. In the case that ym = 0, y ∈ Ann(m), so y ∈ I. If ym 6= 0, then
x ∈ Ann(ym), IAnn(ym) and since I is maximal, x ∈ I, and I is prime.

Lasker's original paper about the Lasker�Noether theorem for ideals over polynomial rings was
about 100 pages long. We prove a more general version for modules over all Noetherian rings. The
key simpli�cation is the use of the right de�nitions. �

Theorem 12 (Lasker's original version). Any ideal I is a �nite intersection of primary ideals.

A submodule N of a module M is called primary if M/N is coprimary. (Note that the term
coprimary is somewhat more basic, as it can be used for modules and not just submodules.)

Theorem 13 (Reformulation in terms of modules). Any submodule N of a �nitely generated
module M is an intersection of primary submodules Ni.

We can simplify this further by quotienting by N : We may as well assume that N = 0, and it
su�ces to prove the following.

Theorem 14. If M is a �nitely generated module over a Noetherian ring R, then the submodule
(0) is an intersection of a �nite number of primary submodules.
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Figure 2: The sets considered in Example 17.

Proof. The �rst step is to prove that any submodule is a �nite intersection of irreducible submodules
(where a submodule is called irreducible, if it is not an intersection of two larger submodules), and
the second step is to prove that every irreducible submodule is primary. For the former claim, use
Noetherian induction: Choose a maximal submodule N that is not an intersection of irreducibles.
Then N is not irreducible, so N = N1∩N2 with N ⊆ N1, N2, so N1,N2 are �nite set of irreducibles
(note that this is exactly the same as the proof that an algebraic set is a union of irreducibles). To
prove that every irreducible submodule is primary, it su�ces to replace M by M/N and proving
that if 0 is irreducible, then 0 is a primary submodule; that is, M is coprimary. Suppose therefore
that p, q are associated primes of M . Then p = Annx and q = Anny for some x, y ∈ M . Now,
consider the submodules Rx ∼= R/p, Ry ∼= R/q of M . If p 6= q, these have 0 intersection: The
annihilator of any nonzero element of Rx is exactly p, as R/p is an integral domain (since p is a
prime ideal). Similarly, the annihilator of any nonzero element of Ry is exactly q. So, if p 6= q,
then Rx∩Ry = {0}, since nonzero elements have di�erent annihilators. But, 0 was assumed to be
irreducible, so p = q, and therefore M has only one associated prime and is coprimary.

Remark 15. Primary in Lasker's de�nition is equivalent to R/I coprimary.

4th lecture, September 7th 2010

Last lecture, we discussed the Lasker�Noether theorem which says that any ideal in a Noetherian
ring is the intersection of a �nite number of primary ideals. This is but a re�nement of saying that
any algebraic set is a �nite union of irreducible ones. At the end of the lecture, we were in the
middle of proving the remark above.

Exercise 16. Check that for Noetherian rings, R/q coprimary implies q primary (in Lasker's sense).
Hints: Reduce to the case q = 0. If a ∈ p =

√
q =
√

0 is not nilpotent, then R[a−1] 6= 0, so pick
associated prime at R[a−1]. Show that the inverse image in R is prime, which gives a contradiction.
See [Eis] for details.

Example 17. Take the ideal (xy, y2) in C[x, y]. The corresponding algebraic set is the line (given
by y = 0). Informally, the intersection is thickened slightly at (0, 0). Think of the algebraic set as
sticking out slightly at (0, 0) (see Figure 2). The ideal sees this, but the algebraic set does not (this
is why we consider the Lasker�Noether theorem a re�nement). Informally, this thickened algebraic
set looks like the union of the line y = 0 and the origin sticking out slightly. In terms of ideals, the
�rst one is simply the ideal (y) and the second one (x, y2). This gives the primary decomposition
of the ideal (xy, y2). It is easy to check that (xy, y2) = (y) ∩ (x, y2). Exercise: Check that these
are primary.

Note however that primary decompositions need not be unique even if they are minimal. In
the example above, (xy, y2) = (y) ∩ (x+ y, y2).

Example 18. Primary decomposition is a sort of generalization of:

(1) The fundamental theorem of arithmetic.

(2) The structure theorem for �nitely generated abelian groups.
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For example, consider (2): Suppose M is a �nitely generated abelian group,

M = Zn ⊕ Zpn1
1
⊕ · · · .

Apply the Lasker�Noether theorem to M : That is, 0 is a intersection of primary submodules.
M/(primary) is coprimary and thus of the form Zn or a �nite abelian p-group. The primary
submodules ofM are (1) Torsion subgruop T ,M/T = Zn, (2) Zn+(Torsion coprime to p),M/this
is a �nite p-group. Again, note that primary decomposition is not unique, ifM is in�nite. Exercise:
If M = Z⊕ Z2, �nd 2 minimal primary decompositions, 0 = A1 ∩A2 = B1 ∩B2, where Ai, Bi are
primary.

Similarly, the fundamental theorem of arithmetic is closely realted to saying that Zn is isomor-
phic to Zpn1

1
⊕ · · · , where n = pn1

1 · · · (note that we don't get the uniqueness part).

1.4 Hilbert's nullstellensatz and application

We want to �nd the relation between

(1) Algebraic subsets of An.

(2) Ideals of C[x1, . . . , xn].

If we have an ideal I, we get an algebraic subset Z(I) of A consisting of the common zeros of
the elements in I. Conversely, if we have an algebraic subset Y of An, we map it to the ideal of
polynomials vanishing on Y . This is not a 1:1 correspondence. For example, the ideals (x) or (x2) in
C[x] both give the algebraic set Z(I) = 0. If Y is any subset of An, then Z(I(Y )) is the closure of Y
by de�nition of closure. The problem is that if a is an ideal, then I(Z(a)) need not be a. It obviously
contains a, but it can be larger: If a = (x2), then Z(a) = 0, so I(Z(a)) = (x) ⊃ (x2). Suppose
pn ∈ a. Then obviously pn vanishes on Z(a), and therefore p vanishes on Z(a), so p ∈ a. Recall that
if a is an ideal, then so is the radical

√
a of a, where

√
a = {p | pn ∈ a for some n ≥ 1}. (Check if

p ∈
√
a, q
√
a, then p+ q ∈

√
a.) Now, perhaps I(Z(a)) =

√
a. We know that

√
a ⊆ I(Z(a)) by the

argument before. This isn't true in general either though: If we work over R and a = (x2 + y2 + 1)
then Z(a) = ∅, so I(Z(a)) = R[x, y] 6=

√
a = a. The problem in this case is that R is not

algebraically closed � this turns out to be the only obstruction. This is the only obstruction:

Proposition 19. If k is algebraically closed, and a is an ideal of k[x1, . . . , xn], then I(Z(a)) =
√
a.

Corollary 20. We get an 1:1 correspondence between closed subsets of An and radical ideals a
(that is, a =

√
a) given by Y 7→ I(Y ) and a 7→ Z(a).

To see why the proposition holds, it is easier to �rst consider the case of maximal ideals and
points in An. Points of An are sort of minimal algebraic subsets, which should correspond to
the biggest possible ideals. For example, (a1, . . . , an) should correspond to the maximal ideal
(x1− a1, . . . , xn− an). Over R, points do not correspond to maximal ideals: For example, (x2 + 1)
is a maximal ideal of R[x] but doesn't correspond to points � again because R is not algebraically
closed.

Theorem 21 (Weak Nullstellensatz). If k is algebraically closed, then any maximal ideal of
k[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an) for some a1, . . . , an.

Remark 22. The converse is trivial: The ideal is maximal because the quotient k[x1, . . . , xn]/(x1−
a1, . . . xn − an) is the �eld k.

Proof of theorem. Let I be a maximal ideal. We know that k[x1, . . . , xn]/I is a �eld. Renumber
x1, . . . , xn so that x1, . . . , xi are algebraically independent and xi+1, . . . , xn are algebraic over them.
So, k ⊆ F = k(x1, . . . , xi) ⊆ K = k(x1, . . . , xn). Notice that K is a �nite module over k(x1, . . . xi).
We also have that F is a �nitely generated �eld extension over k.

The confusing thing here is that we have to distinguish 3 sorts of �niteness: Suppose K is an
algebra over k. We can ask: Is K �nitely generated as a module? Is K �nitely generated as an
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algebra over k? Is K �nitely generated as a �eld over k? In general, the answers to the three will
be di�erent. For example, Q[

√
2] is �nitely generated as a Q-module, Q[x] is �nitely generated

as an algebra but not as a module, and �nally, Q(x) is �nitely generated as a �eld but not as an
algebra.

We want to show that F is �nitely generated as an algebra over k (that is, even if we don't allow
the operation of division). Pick y1, . . . , ym as basis for K as a module over F . Then xk =

∑
tkjyj

for some tkj , and ykyl =
∑
tkljyj for some tklj in F . Let T be a k-algebra generated by all t.

We have k ⊆ T ⊆ F ⊆ K. Then T is Noetherian as the number of t is �nite. In other words,
T is a �nitely generated k-algebra (by Hilbert's �niteness theorem). Moreover, K is generated by
the y as a T -module because of the relations before, as the module contains the x and is closed
under multiplication. Now, K is a �nitely generated module over the Noetherian ring T , so any
submodule such as F is a �nitely generated T -module, and therefore F is a �nitely generated
k-algebra.

Now we will show that k = F . F = k(x1, . . . , xi) is a purely trancendental extension of k. If F is
�nitely generated by elements f1/g1, f2/g2, . . . , where fi, gi are polynomials, then k[x1, . . . , xi] has
in�nitely many primes, so pick one, p, not dividing g1, g2, . . . . Then 1/p is not in k[f1/g1, . . . , f∗/g∗],
which is a contradiction, and k = F . The extension F ⊂ K was �nite, so K is a �nite k-module.
We have not yet used the fact that k is algebraically closed; as k is, any �nite extension of k
is k itself so k ∼= K = k[x1, . . . , xn]/I, so xi 7→ ai for some ai ∈ k, so I contains xi − ai, and
I = (x1 − a1, x2 − a2, · · · ).

Theorem 23 (Hilbert's Nulstellensatz). If k is algebraically closed, then
√
a = I(Z(a)).

Proof. We use the Rabinowitz trick of adding an extra variable x0. Suppose a = (f1, . . . , fn) and
suppose f ∈ I(Z(a)) so f = 0, whenever f1, . . . , fm = 0. Then f1, . . . , fm, 1− x0f has no common
zeros in An+1, adding the extra variable. By the weak Nullstellensatz, they're not contained in any
maximal ideal, so they must generate the whole ideal k[x0, . . . , xn]. Therefore we get the identity

1 = g0(1− x0f) + g1f1 + · · ·+ gmfm

for some gi ∈ k[x0, . . . , xn]. Put x0 = 1/f so 1 = g1f1 + · · · gmfm in the �eld of rational functions.
Clear denominators of the gi by multiplying by powers of f to get fN = h1f1 + · · ·hmfm for
some hi, where N is the maximum power of f in the denominators of the gi. This says that
f ∈

√
(f1, . . . , fm).

Example 24. Consider the intersection of the line y = 0 with the parabola y = x2. This is simply
(0, 0). Look at the ideals (y), (y − x2). The ideal generated by these is the (y, x2), but this is not
the ideal of the point (0, 0). The ideal of the point (0, 0) is the radical of (y, x2) which is (y, x). In
other words, the ideal generated by 2 radical ideals need not be radical.

Example 25. Look at the algebraic set of nilpotent n × n matrices M (that is, Mn = 0). For a
general matrixM , the entries inMn are polynomials of degree n in the entries ofM . Consider the
ideal a generated by the coe�cients of the polynomials, so that the nilpotent matrices are exactly
the algebraic set Z(a). Now, is a radical? That is, are all polynomials vanishing on nilpotent
matrices in a? This is not the case: Take for example Tr(M) = m11 + · · · + mnn. This is not in
a as all generators of a are homogeneous of degree n, but Tr has degree 0. On the other hand, if
Mn =, then all eigenvalues of M are 0, so Tr(M) = 0, so the trace vanishes but isn't one of the
polynomials used to de�ne the ideal.

More generally, if the characteristic polynomial

det(λI −M) = λm +mn−1λ
n−1 + · · ·+m0 =

∏
(λ− αi),

so all coe�cients vanish for M nilpotent.
Consider

M =

[
a b
c d

]
, M2 =

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
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so the ideal is (a2 + bc, ab+ bd, ac+ cd, bc+ d2). By the Nulstellensatz we know that some power
of a+ d = TrM is in this ideal. This isn't entirely obvious. For example, (a+ d)2 = a2 + 2ad+ d2

is not in this ideal, as one might expect. However, (a+ d)3 is.

Exercise 26. Find the smallest power of a11 + · · · ann in the ideal for n × n matrices. (This is
probably hard.)

In general, it can be really hard to �nd the radical of a given ideal.

Example 27. Look at the algebraic set of commuting n × n matrices, AB = BA. This algebraic
set is de�ned by n2 polynomials in 2n2 variables given by the coe�cients of AB−BA. We can ask
the following question: Is the ideal generated by these radical? This problem appears to be open.

5th lecture, September 9th 2010

Last time, we covered

Theorem 28. Hilbert's Nullstellensatz Suppose a is an ideal in k[x1, . . . , xn] (where k is alge-
braically closed), Z is the algebraic set of a, and IZ is the ideal of elements vanishing on Z. Then
I(Z(a)) =

√
(a)

This gives a complete description of the coordinate rings in an algebraic set:

De�nition 29. If Z is an algebraic set inAn, its coordinate ring is k[x1, . . . , xn]/{polynomials vanishing on Z},
which we can think of as polynomial functions on Z.

The coordinate ring has the following properties

(1) It contains the algebraically closed �eld k.

(2) It is �nitely generated over k.

(3) It has no non-zero nilpotents: If a function p satis�es pn = 0 then p = 0.

Hilbert's Nullstellensatz says that algebraic sets are the same as �nitely generated algebras with
no non-zero nilpotents: Suppose A is �nitely generated over k by a1, . . . , an. Then we have a
surjective map k[x1, . . . , xn]→ A, xi 7→ ai. The kernel is some ideal I, and we de�ne an algebraic
set to be the zeros of I in An. This ideal has the property that I =

√
I. The Nullstellensatz

roughly says that this identi�es the category of algebraic sets with the opposite of the category of
rings as above: A map f : A → B between rings corresponds to a map in the opposite direction
from the algebraic set of B to the algebraic set of A.

We consider now an application of this to a problem Hilbert became famous for solving: Suppose
Z is an algebraic set and suppose a group G acts on Z. Can we form a quotient Z/G of orbits
of G on Z as an algebraic set? In other words, can we take quotients of algebraic sets of groups?
If Z ⊆ An, how do we embed Z/G in a�ne space? There is no immediate obvious way to do
this; looking at it geometrically, it's a bit of a puzzle but looking at it algebraically, it becomes
obvious what to do. If Z is a topological space, acted on by G, then functions on Z/G are the
same as functions on Z invariant under the action. So the coordinate ring of Z/G �should be� the
G-invariant elements of the coordinate ring of Z. So in order to construct the quotient, we need
to check that these G-invariant elements constitute the coordinate ring of some a�ne algebraic
set: First o�, it obviously contains k. Secondly, it's not obvious that it is �nitely generated, but
it is obvious that is contains no non-zero nilpotents. So, the obstruction to taking quotients of
algebraic sets by groups is that the ring is �nitely generated. There are two answers to when this
happens. Hilbert's answer is that it often is, and Nagata's is that sometimes it's not. We consider
some examples.

Example 30. Take a�ne space An. This is acted on by the symmetric group Sn by permuting
coordinates. What is the quotient An/Sn? We can think of this as being �sets of n points�. We
take a coordinate ring k[x1, . . . , xn] of An, acted on by Sn. The coordinate ring of An/Sn should
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be the Sn-invariant polynomials, which are just the symmetric polynomials. The ring of symmetric
polynomials is a polynomial ring in the elementary symmetric polynomials

e1 = x1 + · · ·+ xn

e2 = x1x2 + · · ·
...

en = x1 · · ·xn.

So we just get the free polynomial ring k[e1, . . . , en]. That is, An/Sn ∼= An. Note that it is very
rare for the ring of invariant functions to be a polynomial ring as it happened to be in this case.
This happens if G is a re�ection group.

There is a puzzle here: Look at G = {−1, 1} acting on A1 over R. As above, we will describe
R/G. The coordinate ring of R is just R[x], and G acts by x 7→ −x. The invariant polynomials are
R[x2], which is a polynomial ring, so R/G = R. However, the topological quotient R/ ± 1 seems
to be the half-line.

The algebraic set quotient is not always the same as the topological quotient: In this example,
the algebraic set quotient is really the set of pairs {x,−x} that are real in the sense that they
are invariant under complex conjugation. For example, the pair {i,−i} actually appears in the
algebraic set quotient R/{±1}.
Example 31. Take the orthogonal group On(C) acting on Cn. Again we ask what the quotient
Cn/On(C). Geometrically, we want the orbits of On(C) on C, and we get 1 orbit for each complex
z ∈ C which consists of the vectors with (v, v) = z. Algebraically, what are invariant polynomials
on Cn invariant under rotation? These turn out to be polynomials in (v, v). So the ring of invariant
functions is C[(v, v)] is the polynomial ring in one variable, so the quotient is isomorphic to C.
Example 32. Look at the group SLn(C) acting on Cn. The algebraic set quotient in this case will
be a point as SLn(C) has a dense orbit and the invariant polynomials are constant (and here the
geometric quotient is really going to be two points). To make it more interesting, look at the action
of SLn(C) acting on Cn ⊕ · · · ⊕ Cn, where here we have n copies of Cn. A non-trivial polynomial
in n2 variables invariant under SLn(C) is given by the determinant, were we consider the matrix
given by plugging the i'th vector as the i'th row in a matrix. The invariant polynomials in this
case are just polynomials in the determinant, so

⊕n
i=1 Cn/SLn(C) is isomorphic to the a�ne line.

A binary quantic is something of the form anx
n+an−1x

n−1y+· · ·+a0y
n. These are acted on by

SL2(C), where a matrix

[
a b
c d

]
acts as x 7→ ax+ by, y 7→ cx+ dy. This gives an action of SL2(C)

on Cn+1 = (a0, . . . , an). The classical problem of invariant theory is to �nd the polynomials
in a0, . . . , an invariant under SL2(C). One example is the discriminant b2 − 4ac of the quantic
ax2 + bxy + cy2. Gordan showed that the ring of invariants is �nitely generated. He gave an
algorithm to �nd the generators, but it turns out to be very complicated; people have found them
up to around n = 8. Hilbert gave a short non-constructive proof of this:

Theorem 33 (Hilbert). Suppose G is a �nite (for simplicity) group acting on complex vector
space Cn. Then the ring of G-invariant polynomials is �nitely generated. In particular, An/G is
a well-de�ned algebraic set.

Proof. Put A = C[x1, . . . , xn], so G acts on A. We want to �nd generators for the set of G-invariant
polynomials denoted AG. A is graded by degree. Let I be the ideal of A generated by positive
degree homogeneous elements of AG. By Hilbert's basis theorem, I is a �nitely generated ideal of
A. So we can ssume it has homogeneous generators i1, . . . , im �xed by G. The idea is to show that
i1, . . . , im generate the algebra AG. (This is not entirely straightforward: For example, consider
k[x, y] and consider the ring spanned by the elements in Fig. 3; this is not �nitely generated as an
algebra, but as an ideal, it is generated by y.)

We need to use some special property of AG to deduce that i1, . . . , im generate it: AG has a
Reynolds operator called ρ : A→ AG with the property that ρ(ab) = aρ(b) if a ∈ AG and ρ(1) = 1.
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Figure 3: A certain ring of polynomials

In other words, ρ is a AG-module homomorphism (but generally ρ(ab) 6= ρ(a)ρ(b)). The map is
de�ned by ρ(a) = 1

|G|
∑
g∈G a

g (here we need to be in characteristic 0).

Now, put A = A0⊕A1⊕· · · where Ai is the set of degree i elements. We now prove by induction
on deg in AGk that x is in the algebra generated by i1, . . . , im. We know that x = a1i1 + · · ·+amim
for some ai ∈ A. Applying the Reynolds operator we get

x = ρ(x) = ρ(a1)i1 + · · ·+ ρ(am)im,

as x and ij are �xed by G, and the aj are in A
G, as they have degree less than deg(x), so they are

in the ring generated by i1, . . . , um. So x is a polynomial in i1, . . . , im, so i1, . . . , im generate AG

as an algebra.

Remark 34. Hilbert proved this theorem for any �eld k and a general reductive algebraic group,
where we only considered �nite groups. In order to generalize the proof to other groups, note
that the property of the group needed in the proof is, that we can integrate over it to de�ne the
Reynolds operator. The same thing works for any compact group as we can integrate over those.
So for example, this also works for the special unitary group SU2. But what about the group
SL2(C) appearing in the invariant theory problem? This is not compact, but one can use Weyl's
unitarian trick which says that the �nite dimensional representations of SL2(C) are more or less
the same as the �nite dimensional representations of its compact subgroup SU2; in particular, this
can be used to transfer a Reynolds operator from SU2 to SL2(C).

It fails for some groups such as the additive group of a �eld k (which is essentially proved by
Nagata).

So, why do we want to construct quotients? Many moduli spaces are given as such quotients.
Roughly speaking, a moduli space is some sort of �varieties� whose points correspond to something
we want to classify. For example, suppose we want to classify elliptic curves; these are going to
be more or less degree 3 curves in the plane. To do this, we write down a general equation for a
degree 3 curve in P2. This could be something like

a300x
3 + a210x

3y + · · ·+ a003z
3.

We get 10 coe�cients a300, . . . , a003. Two such sets of coe�cients might very well correspond to
the same elliptic curve, so they are acted on by automorphisms of the projective plane PGL3(C),
which also acts on P9. We then want to take the quotient P9/PGL3(C).

6th lecture, September 14th 2010

Last lecture, we were looking at the Nullstellensatz which says that a�ne algebraic sets are more or
less the same as �nitely generated algebras R over k with no nilpotents. The connection between
them is taking the coordinate ring k[x1, . . . , xn]/I and going the other way is taking the subset of
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kn where all elements of I vanish, where R = k[x1, . . . , xn]/I. A better way of going the other way
turns out to be taking the �spectrum� of R, as we will see a later. One application we saw was how
to make sense of quotients of algebraic sets by groups. While it doesn't quite make sense on a�ne
algebraic sets, we managed to do this by simply considering the �xed points RG of R under G.

Example 35 (Cyclic quotient singularities). Take a cyclic group Zn acting on km by (x1, . . . , xm) 7→
(x1ζ1, . . . , xmζm), where (ζi)

n = 1. From the viewpoint of representation theory, this is the trivial
example of the representation of a cyclic group. We want to take the quotient km/Zn.

The casem = 1 is uninteresting: The coordinate ring is k[x] and the action of the group is given
by x 7→ ζx. Assume that ζ is a primitive n'th root of unity. Now the �xed points of the action on
k[x] is simply the subalgebra generated by xn, k[xn], which is again a polynomial ring of 1 variable,
and the quotient of the a�ne line by Zn is just going to be the a�ne line again. Consider now

Figure 4: The �xed subspace under the cyclic action.

k2/Zn. Take the action to be (x, y) 7→ (ζx, ζy). (Another action would be taking (x, y) 7→ (x, ζy)
which would actually give a di�erent quotient.) The coordinate ring of k2 is just k[x, y]. Under the
action xiyj 7→ ζi+jxiyj , and the �xed subspace is spanned by xiyj with n | (i+ j). For example,
if n = 3 the �xed subspaces are shown in Fig. 4. In general, the �xed subring are generated by
xn, xn−1y, . . . , yn, and this is in fact the smallest possible number of generators. Denote them
by zn, zn−1, . . . , z0 respectively. We have several relations between these: We have zizj = zkzl
if i + j = k + l; again, these relations actually generate all of them. So the coordinate ring of
the quotient is k[z0, . . . , zn]/I, where I is the ideal generated by zizj = zkzl for i + j = k + l.
The corresponding quotient variety is then equal to the subset of kn+1 of vectors (z0, . . . , zn) with
zizj = zkzl for i + j = k + l. We will see that we can actually not embed this into something of
dimension less than n+ 1, even though we started with something 2-dimensional.

Example 36 (Moduli space in chemistry). In chemistry, we have the molecule cyclohexane (drawn
simply as a hexagon). Chemists ask what the con�gurations of this molecule are. Each of the
6 carbon atoms goes to a point in R3, so we get a point in R3·6 = R18. We can't take any
points p1, . . . , p6 (p6 = p0); corresponding to distances and angles between them in the molecule
we have some polynomial relations: The distance from pi to pi+1 is �xed, so (pi − pi+1)2 = c
constant. Similarly the angle pipi+1pi+2 is �xed. This means that the distance pipi+2 is also �xed,
so (pi−pi+2)2 = d another constant. So the position of the molecule is an algebraic set in R18 given
by the intersection of 12 quadrics modulo the group of isometries of Euclidean space. This last
group is 6-dimensional (3 translations and the rotation group). We can guess what this looks like;
for example, we can try to guess the dimension, which might turn out to be 0, saying essentially
that there is only a �nite number of con�gurations. This turns out to be wrong. In fact, the
moduli space of con�gurations is a point + a circle; there is rigid way of joining the atoms, but
there is also one which allows for a rotational freedom. This was discovered by Herman Suchse.

1.5 Dimension of algebraic sets

We begin with a quick review of dimension for Hausdor� spaces. When trying to de�ne dimension,
we run into the following problems:

(1) Cantor showed that R2 and R1 have the same number of points.
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(2) We have a continuous surjective map R1 → R2 given by Peano curves.

Figure 5: R2 has Lebesgue dimension 2.

One way of de�ning dimension is using Lebesgue covering dimension: A set has dimension ≤ d, if
every open cover has a re�nement, so that any d+ 2 sets have empty intersection. For example in
the plane, 3 open sets often intersect, but 4 don't (see Fig. 5). However, with this de�nition it is
hard to show that Rn has dimension n.

Dimension for non-Hausdor� spaces is totally di�erent. For example, Lesbesgue covering di-
mension simply fails, and we have to come up with something else. Look at the a�ne plane A2.
As we have seen, closed sets look like a union of points and curves. In other words, we can �nd
chains of irreducible closed sets, point ⊆ curve ⊆ plane. It is intuitively plausible that we cannot
�nd chains of 4 irreducible closed sets like this. This suggests the following:

De�nition 37. The dimension of a topological space is de�ned to be the supremum of n so that
we can �nd a chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of distinct irreducible closed subsets.

Example 38. For the a�ne line, the only irreducible closed subsets are points and A1, and we get a
chain (point) ⊂ A1, and the a�ne line has dimension 1. Note that the Lebesgue dimension is∞ so
any �nite number of open subsets intersect � conversely, for Hausdor� space, the only irreducible
closed subsets are points, so that all have dimension 0.

Example 39. The dimension of A4 is 4: We need to know all the irreducible closed subsets of A4.
It is not clear what the irreducible closed substs are, and in general it is very hard to calculate
dimensions of anything of dimension greater than or equal to 2 or 3 using this de�nition.

De�nition 40. The dimension of a ring is de�ned to be the largest n so that we can �nd a chain
p0 ⊂ p1 ⊂ · · · ⊂ pn of distinct prime ideals.

This de�nition is reasonable by the connection between ideals and sets given above. We do
have other de�nitions of the dimension of a ring: Something of higher dimension should have
�more� functions of it. Suppose V is a variety. Then the coordinate ring R is the integral domain
k[x1, . . . , xn]/prime ideal, so it has a quotient �eld K. We can then de�ne the dimension of V to be
the transcendence degree of K over k � that is, the maximum number of algebraically independent
elements.

Example 41. For An the coordinate ring is R = k[x1, . . . , xn], and K = k(x1, . . . , xn), which has
transcendence degree n.

In fact, this de�nition was used for a long time, but it doesn't work for rings that aren't integral
domains, and such ones turn up often in algebraic geometry. The best de�nition of dimension
uses Hilbert polynomials, which we will be discussing later: Suppose that a ring R has only one
maximal ideal m (such a ring is called a local ring). Then we can estimate the size of R by looking
at R/m,R/m2, . . . . Here R/m = k will be a �eld. Assuming k ⊂ R, each of the R/mn will be
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a vector space over k, and we can look at the growth rate of the sequence dim(R/mn). It turns
out that the dimension of R/mn will be a polynomial of some degree d for large k. We de�ne the
dimension to be this degree d.

Example 42. Look at the ring of formal power series k[[x1, . . . , xn]] in x1, . . . , xn. It has only one
maximal ideal m given by elements of 0 constant term. The dimension of R/m is 1, a basis of
R/m2 is 1, x1, . . . , xn, so it has dimension n+ 1. Similarly R/m3 has dimension (n+ 1)(n+ 2)/2,

and in general R/mk has dimension (n + 1) · · · (n + k − 1)/k! =

(
n+ k
k

)
=

(
n+ k
n

)
, which is a

polynomial in the degree n, so the dimension of k[[x1, . . . , xn]] is n.

Now the dimension of any ring r is the maximum of dimensions of local rings Rm, where Rm
is the localization of R of R at a maximal ideal m meaning that we invert all elements of R not in
m; we will talk more about localizations later. This de�nition is roundabout, but it is easy to use,
and it is easy to calculate dimensions.

Theorem 43. All three de�nitions of dimension of a ring coincide when they are de�ned.

Proof. See [Eis].

Remark 44. It is tempting to think that �nite dimension has something to do with being Noethe-
rian; for example, the ring k[x1, x2, . . . ] in in�nitely many variables turns out to be in�nite dimen-
sional, but it is not Noetherian. It turns out to be wrong: The quotient k[x1, . . . , ]/(x

2
1, x

2
2, . . . ) is

of dimension 0, but is not Noetherian. Every Noetherian local ring is �nite dimensional. Nagata
found a Noetherian in�nite-dimensional ring.

Example 45. What is the dimension of the Hilbert scheme of n points on Am? Roughly (but rather
misleadingly), the Hilbert scheme is something whose points parametrize sets of n points on Am.
More accurately, the ideal of n points has (vector space) codimension n in k[x1, . . . , xm], and the
Hilbert scheme is �really� the codimension n ideals in k[x1, . . . , xm]. Take m = 1: The codimension
n ideals in k[x1] are polynomials of degree n, xn+an−1x

n−1 + · · ·+a0. This will be n-dimensional.
Similarly for m = 2, the Hilbert scheme has dimension 2n.

One would guess that for m dimensions, the Hilbert scheme has dimension mn: Informally, we
have n points, each of which give m dimensions. Surprisingly this is false in dimension m ≥ 3.
The problem is that for m ≥ 3 there are more ideals than one might guess corresponding to many
points coinciding. Even for m = 2 there are a lot of ideals corresponding to �2 points at (0, 0)�;
k[x, y]/(x, y2) or k[x, y]/(y, x2). For m ≥ 3 there are too many ideals like these.

Take m = 3 and the ideal M = (x1, x2, x3). Look at ideals I with Mk ⊇ I ⊇Mk+1. Any sub-
space of the vector space Mk/Mk+1 will be an ideal, and codim(Mk) is some degree 3 polynomial
in k, so dim(Mk/Mk+1) is a degree 2 polynomial in k. Now the dimension of the Grassmannian of
dimension a subspaces of kb is a(b− a) (give or take 2). So the Grassmannian of dimension ≈ a/2
of ka has dimension about a2/4, so the dimension of the Grassmannian of Mk/Mk+1 of subspaces
of half the dimension ofMk/Mk+1 is given by a degree 4 polynomial in k. The codimension of this
ideal is given by a degree 3 polynomial in k. So the dimension of the Hilbert scheme is a degree 4
polynomial in k, which eventually will be larger than mn = 3n which is a degree 3 polynomial in
k. So the Hilbert scheme has components of unexpectedly large dimension if the dimension m of
Am is ≥ 3 and the number of points n is su�ciently large.

7th lecture, September 16th 2010

2 Projective varieties

Today, we will discuss projective varieties (corresponding to 1.2 i [Har]).

De�nition 46. Projective space is the set of points (x0 : · · · : xn) 6= (0, . . . , 0) modulo scalars,
(x0 : · · · : xn) = (λx0 : · · · : λxn). One can think of this as lines in An+1 through the origin.

13



We consider projective space Pn as a�ne space together with points at in�nity, where a�ne
space is the set of points (1 : x1 : · · · : xn) and the points at in�nity are the points (0 : x1 : · · · : xn),
which is just Pn−1, so Pn = An ∪ Pn−1 = An ∪An−1 ∪ · · · ∪ pt.

2.1 Historical background

Figure 6: A pair of railway tracks

Projective geometry originated in the following question: What properties are preserved by
projections? Consider for example a pair of railway tracks (Fig. 6): They are parallel in the real
world, but drawing a picture they meet at the horizon, kind of corresponding to a point at in�nity.

In synthetic geometry, one writes down axioms for points, lines, circles, etc. (a la Euclid).
Opposed to this is analytic geometry, where one writes down coordinates and converts everything
to algebra.

In the 19th century, one came up with axioms for projective geometry: We have a set of �points�,
a set of �lines�, and an incidence relation between points and lines (which is the relation that the
�point lies on the line�). We then have the following axioms:

(1) Any 2 distinct points lie on a unique line.

(2) Any 2 lines �in the same plane� meet at a point (as opposed to what happens in usual
geometry). Here we say that 2 lines l1, l2 lie in the same plane, if we can �nd distinct points
and lines a, b, c, d, e, l3, l4 as in Fig. 7.

(3) There are least 3 points on any line (which serves to eliminate degenerate cases).

Figure 7: The set of points and lines used in the axiomatization of projective geometry.

Example 47. Projective space is an example of the above. We can think of �points� as the lines
through 0 in An+1 and the �lines� as planes through 0 in An+1.

We also have the concept of dimension: Dimension 0 corresponds to no lines. Dimension 1 corre-
sponds to exactly one line. These cases are rather boring. In dimension 2 we have more than 1
line, but any 2 lines meet � an example is the Fano Plane (Fig. 8) where we have 7 points and a
bunch of lines. This is exactly the projective plane over a 2 element �eld which on the other hand
is the set of lines and planes in (F2)3. In dimension greater than or equal to 3, there are 2 lines
that do meet.

Theorem 48 (Desargues). We have 10 particular points and 10 lines � the bottom three points lie
on a line.2

2See http://en.wikipedia.org/wiki/Desargues'_theorem for an illustration that shows the situation better

than I would be able to draw.
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Figure 8: The Fano plane.

Proof. It is obvious: How does an artist draw an accurate picture of a triangle?3 This can be
arranged in 3 dimensions but not in 2 dimensions.

Theorem 49 (Monge's theorem). In the same spirit consider a situation we have cones formed
by three spheres4 � again we have three points sitting on a line.

Again the proof is about considering an extra dimension.
We consider now a classi�cation of models of projective geometry.

Theorem 50. Take dimension > 1.

• If the dimension is greater than or equal to 3, then Desargues's theorem holds. If Desargue's
theorem holds, then the projective geometry is the set of points of lines of some projective
space over some division ring.

• A division ring is a �eld if and only if Pappus's theorem holds.

So what we are actually doing is considering the above axioms for projective geometry and
demanding that Pappus's theorem holds.

Note that there are many projective planes, called non-Desarguesian, where Desargues's theo-
rem fails � for example the projective plane over the octonions. Moulton proved the following: If
we take (a�ne � we really have to add points of in�nity) points to be the points of R2 and lines to
be lines doubling in slope, when they cross the y-axis, we get a non-Desarguesian plane (see Fig.
9). Borcherds: �Non-Desarguesian planes are a huge pile of junk.� For example, what is the planes
of �nite orders? Here, the order is the number of points on a line - 1. There are none of order ≤ 3,
3 of order 9 and none of order 10.

2.2 Coordinate rings in projective varieties

We know that a�ne space An corresponds to the coordinate ring k[x1, . . . , xn], and a�ne algebraic
sets correspond to ideals I =

√
I (this is essentially the Nullstellensatz). We want to �nd out what

the analogue of this is for projective space. It turns out that projective space Pn corresponds in
the same way to the graded ring k[x0, x1, . . . , xn], and closed subsets correspond to homogeneous
ideals I = I0 ⊕ I1 ⊕ · · · with the pieces having various degrees and I =

√
I. Roughly, this is

because points of Pn corresponds to lines through 0 in An+1 and subsets of Pn corresponds to
�cones� (meaning unions of lines) with vertex at 0 in An+1, and this corresponds to the ideal being
homogeneous. This is done in detail in [Har].

3Again, see http://en.wikipedia.org/wiki/Desargues'_theorem
4See http://en.wikipedia.org/wiki/Monge's_theorem
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Figure 9: A non-Desarguesian plane.

2.3 Examples

Example 51. The twisted cubic in A3 is given by points (t, t2, t3). We will extend this to a projective
variety in P 3. Its ideal in k[x1, x2, x3] is (y−x2, z−x3). The image in projective space (1 : t : t2 : t3)
is contained in the set of points of the form (s3 : s2t : st2 : t3) (that is, we multiply everything
by an extra variable to make it homogenouos). The twisted cubic is the points (s3, s2t, st2, t3) for
(s, t) 6= (0, 0). If we write (s3 : s2t : st2 : t3) = (z0 : z1 : z2 : z3), we have z0z3 = z1z2, z

2
1 = z0z2,

and z2
2 = z1z3. These generate an ideal, but any 2 do not. If we take the ideal of the a�ne curve

(y − x2, z − x3) and homogenize it we get ty = x2, t2z = x3. That is, homogenizing a set of
generators of the ideal of an a�ne variety, we don't get the set of generators of the ideal of its
closure as a projective variety.

Example 52. We will check the Weil conjectures (proved for general varieties in the 1970s) for
projective space. Among other things the Weil conjectures give a relation between the cohomology
of complex projective space and the number of points in projective space over a �nite �eld.

First o�, the cohomology of Pn(C) is given by the decomposition Pn(C) = pt ∪ C ∪ C2 ∪
. . . and using cellular homology, we get dimH2k(Pn(C);R) = 1, H2k+1(Pn(C);R) = 0 (and
Hk(Pn(C);R) = 0, when k > n).

We will now count the number of points of Pn over a �nite �eld with q elements. There are
two ways of doing this: The �rst method is considering Pn(Fq) = (Fn+1

q \ (0, . . . , 0))/F ∗q , so the
number of points is (qn+1−1)/(q−1). On the other hand, writing Pn(Fq) = An(Fq)∪An−1(Fq)∪
· · · ∪A0(Fq), and the number of points is qn + qn−1 + · · ·+ 1 = (qn+1 − 1)/(q − 1).

Now, we will work out its zeta function. For �xed q, we have by de�nition,

ZV (t) = exp(
∑
n≥1

tn

n
· (number of points of V over Fqn)).

This is closely related to the usual zeta function. Note that if W = U ∪V , we have ZW = ZU ·ZV .
Notice that

ZAn = exp(
∑
n≥1

tn

b
· (qn)m) = exp(

∑
n≥1

(tqm)n

n
)

= exp(− log(1− tqm)) =
1

1− tqm
.
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Finally,

ZmP = ZA0 · · · · · ZAm =
1

1− t
· 1

1− qt
· · · · · 1

1− qmt
.

Notice that this is a rational function (this is one of the Weil conjectures, proved for general
varieties in the 1960s). Secondly the poles all have absolute values integer powers of q (in general,
absolute values integer powers of q1/2) � this is actually the Riemann hypothesis for projective
varieties. Thirdly, the number of poles of absolute value q−k/2 = dimHk(Pn(C)) (and this is also
one of the Weil conjectures).

Example 53. Is the product of two projective variety a projective variety? [The analogue for a�ne
varieties is trivial, Am × An ∼= Am+n, so if Y ⊆ Am, Z ⊆ An, we have Y × Z ⊆ Am+n, and
the ideal of Y × Z is the union of the two ideals. This is in brackets as it is not really true
as topological spaces: �It is the product as a product of schemes, which should shut everybody
up�.] We try this in projective space. The problem is that Pm × Pn 6= Pm+n, as the product
(x0 : · · · : xm)(y0 : · · · : yn) is not well de�ned. Over the complex numbers, P 1 × P 1 is not even
homeomorphic (in the Euclidean topology) to P 2; this can be seen by using the Künneth formula
of algebraic geometry, as H0(P 1 × P 1) = C, H2(P 1 × P 1) = C⊗ C, but H2(P 2) = C. It can also
be seen by counting the number of points over �nite �elds: P 1 × P 1 has (q + 1)2 points, while P 2

has q2 + q + 1 points.
To make Pm × Pn into a projective variety, we will map it as a closed subset of Pmn+m+n

using what is known as Segre embedding given as follows:

(x0 : · · · : xm)× (y0 : · · · : yn) 7→ (x0y0 : · · ·xmy0 : x0y1 : · · · : xmyn),

where the last expression consists of (m+ 1)(n+ 1) coordinates. Next week, we will �nd the ideal
of this subset.

8th lecture, September 21st 2010

Last lecture, we were looking at the problem of de�ning a product of projective varieties. We saw
that Pm × Pn 6= Pm+n. We are going to construct Pm × Pn as a projective variety in Pmn+m+n.
Last time we got as fare as de�ning the Segre embedding Pm × Pn → Pmn+m+n (see above).

Note that if we identify points of Pm with 1-dimensional subspaces Lx of km+1, the Segre
embedding is given by (Lx, Ly) 7→ Lx ⊗ Ly.

We want to identify the image of the Segre embedding; that is, we will �nd generators for
the ideal of the image. The image is the set of points (x0y0 : · · ·xmy0 : x0y1 : · · · : xmyn) =
(z00, z10, . . . , zmn), so the zij are the coordinates in P

(m+1)(n+1)−1. These satisfy some relations,
such as zijzkl = zilzkj .

Now we will show that we have found enough relations to de�ne the image. That is, we will
show that if (z00, . . . , zmn) satisfy the above relations, then they are of the form (x0y0, . . . ). Assume
that some zij 6= 0 and renumber so that z00 6= 0. We can assume that z00 = 1. Put yl = z0l and
xk = zk0. Then zkl = z00zkl = zk0z0l = xkyl, so the set of (z00, . . . , zmn) is the image of the Segre
embedding.

Example 54. Consider P 1 × P 1 → P 3, (w : x), (y : z) 7→ (wy,wz, xy, xz) =: (a, b, c, d) and the
relation becomes ad = bc, so P 1×P 1 is identi�ed with the quadric ad = bc in P 3. Note that P 1×P 1

has 2 rulings (where a ruling means that you cover by copies of P 1; we can cover by a× P 1 or by
P 1 × b). So the quadric ad = bc also has 2 rulings, which appears to be nonsense, because every
nonsingular quadric in P 3 can be put in this form by a change of variable. Really we are looking
at a non-singular quadratic form Q in 4 variables, Q =

∑
aijxixj , with associated bilinear form

(x, y) 7→
∑
aijxixj . Pick v 6= in k4 with (v, v) = 0 (which exists because k is algebraically closed).

Pick w with (w, v) = 1 and λ so that 0 = (w+λv,w+λv) = w2 + 2λ(v, w) +λ2v2 = w2 + 2λ(v, w)
(which is possible when char k 6= 2), so we can assume (w,w) = 1. What we have done is that
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we have a 2-dimensional �hyperbolic plane�, w2 = v2 = 0, (w, v) = 1. We can repeat this on the
orthogonal complement of (v, w) and �nd vectors v1, v2, v3, v4 with inner products

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

so the quadratic form can be put in form ab+cd. A corollary is that the sphere x2+y2+z2 = 1 has 2
rulings, which seems to be odd, as it obviously has none: From a real di�erential geometry point of
view it doesn't, but over the complex numbers it does: it is essentially of the form w2+y2+z2 = w2

in CP 3.

Figure 10: A hyperboloid with two rulings.

Example 55. The hyperboloid x2 + y2− z2 = 1 has 2 rulings over the reals. Projectively, x2 + y2 =
z2 + w2. This is sometimes used in architecture (see Fig. 10, where the two rulings are the ones
going in di�erent directions).

Example 56. The Veronese surface is an embedding of P 2 into P 5 given by

(x : y : z) 7→ (x2 : xy : y2 : xz : yz : z2) =: (z11 : z12 : z22 : z13 : z23 : z33).

These satisfy the relations zijzkl = zilzjk.
We have lots of other similar embeddings Pm → Pn, such as (x0 : · · · : xm) 7→ (xk0 , x

k−1
0 x1, . . . ),

where the image consists of monomials of some degree k.

Example 57. The Grassmannian G(m,n) is the set of m-dimensional subspaces of km+n, which is
the same as the set of (m − 1)-dimensional linear subvarieties of Pm+n−1. For example, G(0, n)
is a point, and G(m,n) ∼= G(n,m): If we have an m-dimensional subspace W of V m+n, we can
map it to the dual W⊥ in V ∗ ∼= km+n, where W⊥ is the set of all vectors of the dual V ∗ of
V that vanish on W . This gives an isomoprhism between m-dimensional subspaces of V and
dim(V )−m-dimensional subspaces of V ∗. Also note that G(1, n) = Pn.

The �rst non-trivial case of a Grassmannian is G(2, 2) consisting of 2-dimensional subspaces of
k4 or of lines in P 3. We will �nd a variety whose points correspond to such lines; it is the simplest
nontrivial example of a Hilbert scheme, which parametrizes subschemes of projective space. We
will embed G(2, 2) in P 5 by the so-called Plucker embedding.

Suppose a plane is spanned by two vectors a = (a0, a1, a2, a3), b = (b0, b1, b2, b3). Look at the

matrix

(
a0 a1 a2 a3

b0 b1 b2 b3

)
. Look at all 2 × 2-minors, and take their determinants, so we get 6
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numbers

(
det

(
a0 a1

b0 b1

)
, . . .

)
∈ P 5. We want to show that this depends on the subspace spanned

by a, b and not of the choise of basis a, b. Any other basis is given by

(
A B
C D

)(
a
b

)
for some(

A B
C D

)
∈ GL2(C). This multiplies all determinants above by det

(
A B
C D

)
, which makes no

di�erence in P 5. Thus we get a well-de�ned map G(2, 2)→ P 5, and we will �nd the image of this
map. It is not onto as dimP 5 = 5 and dimG(2, 2) = 4 � in general, dim(G,m) = mn. There

must be some function vanishing on G(2, 2) but not on P 5. Suppose sij = det

(
ai aj
bi bj

)
, and

(s01, s02, s03, s12, s13, s23) ∈ P 5. There must be some relation between the sij . The relation is the
Plucker relation given by (up to possible sign errors)

s01s23 − s02s13 + s03s12 = 0.

The proof is given by simply expanding. For example, we have s01s23 = (a0b1− a1b0)(a2b3− a3b2)
which has a term a0a2b1b3, which also appears in s03s12. In general every term aiajbkbl with
i, j, k, l distinct occurs twice with opposite signs.

Now we want to check that the map from G(2, 2) to the points satisfying the Plucker relation
is onto. We can suppose that some sij is nonzero, and assume that it is s01. Put s01 = 1. Then
s23 = s02s13 − s03s12, so it is determined by the others. So the point (s01, . . . ) is in the image of(
a
b

)
=

(
1 0 s12 s13

0 1 s02 s03

)
; most of the 2× 2 determinants look like det

(
1 s13

0 s03

)
= s03. The �nal

one is det

(
s12 s13

s02 s03

)
=

?
− s23, so (s01, . . . ) is in the image of the plane spanned by (1, 0, s12, s13)

and (0, 1, s02, s03), so G(2, 2) is isomorphic to the quadric given by the Plucker embedding.

Example 58. We will consider the cohomology of a quadric in P 5. The quadric is isomorphic to
G(2, 2). The Grassmannian can be written explicitly as a disjoint union of a�ne spaces � this make
Grassmannians really easy to handle. We can do this explicitely; G(2, 2) is the union of: All planes

spanned by

(
a
b

)
=

(
1 0 ∗ ∗
0 1 ∗ ∗

)
which gives a copy of A4 in G(2, 2) (this corresponds to what

we considered previously with s12 6= 0). Similarly, we consider those spanned by

(
1 ∗ 0 ∗
0 0 1 ∗

)
and

(
1 ∗ ∗ 0
0 0 0 1

)
corresponding to copies of A3 and A2. These three give us all spaces containing

(∗ ∗ ∗ ∗ ) with the �rst ∗ 6= 0. Finally, we add

(
0 1 0 ∗
0 0 1 ∗

)
,

(
0 1 ∗ 0
0 0 0 1

)
,

(
0 0 1 0
0 0 0 1

)
. So

G(2, 2) is a disjoint union of A4, A3, A2, A2, A1, A0, and the cohomology Hi(G(2, 2)) has dimension
1, 0, 1, 0, 2, 0, 1, 0, 1 for i = 8, 7, . . . , 0 respectively. Remark: The ring structure on the cohomology
is quite complicated and involves Littlewood�Richardson coe�cients.

Example 59. We will consider in a bit more detail the twisted cubic consisting of points (s3 : s2t :
st2 : t3) ∈ P 3, which is the closure of the points (t, t2, t3) ∈ A3, which corresponds to the ideal
generated by y − x2, z − x3. The �rst one has degree 2 and the second one degree 3, and their
intersection should have degree 6 by Bezout's theorem (which we haven't really covered yet), but
from the name �cubic� it should have degree 3 (where we haven't really de�ned degree either). The
missing �degrees� turn up �at ∞�.

Suppose we look at the projective algebraic set given by the projectivizations of y−x2, z−x3,
that is wy − x2, w2z − x3. Again, the algebraic set given by these should have degree 6. To see
what it looks like, we cover P 3 by four copies of A3; if P 3 has coordinates (w : x : y : z), these are
given by one of the four coordinates being non-zero. For w = 1, the equations become y − x2 = 0,
z − x3 = 0, we get the twisted cubic in A3 we started with. If x = 1, we get wy = 1, w2z = 1,
we get a single curve, w 6= 0, y = 1/w, z = 1/w2. If y = 1, we have w − x2 = 0, w2z = x3. We
get the equation x4z = x3 or x3(xz − 1) = 0. This algerabic set has 2 components x = 0 and
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xz = 1; the last one turns out to be the twisted cubic again, while the x = 0 corresponds to an
extra line at ∞. Finally if z ==, we have wy = x2, w2 = x3. If w 6= 0, eliminating y as y = x2/w
we get w2 = x3, which is again a twisted cubic. Here we also get a line w = 0, x = 0, which is
the same one as before. So, the projective algebraic set de�ned by wy = x2, w2z = x3 has two
components as before. The total degree of these seems to be 1 + 3 = 4 < 6, but the line sort of
has �multiplicity�; the line is given by x3 = 0 rather than x = 0. What is going on is that the ideal
(wy − x2, w2z − x3) is not radical. For example, (y2 − xz)x is not in this ideal, but its cube is.

9th lecture, September 23rd 2010

We will continue to run though examples of projective varieties. Last time we considered G(2, 2)
which can be deined as lines in P 3, 2-dimensional subspaces of k4, or as the conic s01s23−s02s13 +
s03s12 in P 5 (the Plucker embedding).

Example 60. We will now generalize this to arbitrary Grassmannians G(m,n), the m-dimensional
subspaces of km+n or the m − 1-dimensional linaer algebraic sets in Pm+n−1. We will copy the
construction of G(2, 2), but with more variables to keep track of.

We pick m vectors spanning the subspace, a11, a12, . . . , a1,m+n, . . . , am1, . . . , am,m+n and form
the matrix (aij)ij . We will �nd functions of these invariant under a change of basis. As before, we

take determimants of m ×m-minors. There are

(
m+ n
m

)
ways of doing this. These are almost

but not quite invariant: If we act on the basis by an element A of GLm, then each determinant

is multiplied by det(A). So all

(
m+ n
n

)
determinants give a well de�ned vector in P

m+ n
n

−1

.

The next problem is to �nd its image. We need to �nd lots of relations satis�ed by these

(
m+ n
n

)
determinants, generalizing the Plucker relations from before. The relations turn out to be:

0 =
∑
λ

(−1)λPi1,...,im−1,jλPj1,...,jλ−1,jλ+1,...,jm+1 ,

where Pabc... is the determinant formed by columns a, b, c, . . . , and i1, . . . , im−1, j1, . . . , jm+1 are
integers. The idea of the proof is the following:

(1) It's enough to do the case of an m× 2m-matrix

(2) Expand everything out: Every term occurs twice with opposite signs

It is not necessary to write everything out like this; there is a fancy de�nition: A point of a
Grassmannian is a subspace W ⊆ V . We consider exterior powers

∧m
W →

∧m
(V ) which is a

point in P (
m+n
m )−1.

We will check (/give a sketch) that this map is onto. We can assume that some Pabc... is 1
and assume that P12...m = 1. We can �nd a point of the Grassmannian with given values of
P12...,r−1,r+1,...,m,s for any r, s. There are m choices of r and n choices of s. By choosing a point
of Grassmannian with basis 

1 0 0 0 ∗ ∗ ∗
0 1 0 0 ∗ ∗ ∗
...

. . .
. . .

. . .
...

...
...

0 0 0 1 ∗ ∗ ∗


with mn choices for the last columns, and these are the one giving the P12...,r−1,r+1,...,m,s. Next we
use the Plucker relations to show that all other coordinates P∗∗∗... are determined by these ones.
The idea is that P1...m · P − i1, . . . , im is a sum of terms with more indices in the set {1, . . . ,m}.
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We see that Grassmannians are given as an intersection of a huge number of quadrics � all
Plucker relations have degree 2 in the coordinates. Grassmannians are also homogeneous spaces;
it is possible to write them as the quotient of groups: The group GLm+n acts transitively on m-
dimensional subspaces, so G(m,n) = GLm+n/H for some subgroup H �xing some m-dimensional
subspace. Taking the m-dimensional subspace to be spanned the �rst m coordinate vectors

e1, . . . , em. The matrices mapping this to itself is the set of block matrices

(
∗ ∗
0 ∗

)
, where the

0-block is of dimension n×n. The set of these has dimension m2 +n2 +mn, so the Grassmannian
G(m,n) has dimension (m+ n)2 − (m2 + n2 +mn) = mn.

Notice that G(m,n) is given by the quotient an a�ne algebraic group with an a�ne algebraic
group, but the Grassmannian itself is projective. At �rst sight, GLm doesn't look a�ne, as it's
given by the equation det! = 0, which is an open subset of Amn. It is closed in Am·m+1 though:
We can think of GLm as pairs (m, t) with m ∈ Mm, t ∈ k with det(m) · t = 1, which is a closed
hypersurface. (Notice also that open subsets of An are not all isomorphic to a�ne varieties: This
works for complements of 1-hyperplane but not for say A2 \ (0, 0).)

Next we can ask what Grassmannians are good for. They were used by Grothendieck to
construct Hilbert schemes. The construction is easy, but the de�nition of Hilbert schemes is much
harder.

The idea is the following: A Hilbert scheme should parametrize algebraic subsets of Pn (in the
same way as G(m,n) parametrizes linear algebraic subsets). Rather, instead of algebraic subsets,
we should have subschemes, which we haven't de�ned yet. In a�ne space, algebraic subsets
correspond to radical ideals. The di�erence between algebraic subsets and subschemes is that the
subscheme corresponds to all ideals. So really, instead of parametrizing subschemes of Pn, we
parametrize graded ideals in k[x0, . . . , xn]. A graded ideal is an ideal I = I0 ⊕ I1 ⊕ · · · , where Id
consists of homogeneous polynomials of degree d. By Hilbert's basis theorem, we can �nd d so
that Id generates Id ⊕ Id+1 ⊕ · · · . We can use Id to de�ne a point of a Grassmannian: Id is a
subspace of dimension dim(Id) in s space of dimension the number of polynomials of degree d, so
we get a well de�ned point of some Grassmannian. Suppose we �x the dimensions of Id, Id+1, . . .
as dim(Id) = p(d) (we will see later that p(d) is in fact a polynomial in d for large d, called the
Hilbert polynomial). Look at the map from Id×Sn → Sd+n, where Sn is the set of polynomials of
degree n. The key point is that the rank of this map is at most p(d+ n) because the image lies in
Id+n. Recall a determinantal variety is given by linear maps km → kn of rank less than or equal to
r, so the rank requirement above gives a closed subset of the Grassmannian. The result is that for
a sequence p(d), p(d + 1), . . . , the ideals with dimension dim(Id) = p(d) correspond to points of a
certain closed subset of the Grassmannian. This is roughly the idea of the construction of Hilbert
scheme: We take the scheme and map it to Grassmannians and notice that the map given above
gives a closed point.

We have a couple of easy examples of Hilbert schemes:

(1) Grassmannians; these parametrize linear subspaces.

(2) Hypersurfaces in Pn given by
∑
a∗x
∗
0x
∗
i · · · = 0. We take the coe�cients a∗ as points of

projective space of some high dimension. Here the Hilbert scheme is just some projective
space.

(3) Consider n points on a line P 1. The roots of anx
n+ · · ·+a0 parametrized by (a0 : · · · : an) ∈

Pn.

These examples are misleading though, and in general Hilbert schemes exhibit every imaginable
sort of weird behavior.

When we say that the Grassmannian parametrizes subspaces of Pn � rather than just saying
that we parametrize by for example a discrete set of points � we really have the following idea by
Grothendieck in mind: We don't just look at single subspaces but at families of subspaces of Pn.
This means that we take some variety S and look at Pn × S → S. Consider now a subvariety
V ⊆ Pn × S such that the intersection with V of each �ber is a linear subspace. We can think of
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this as a family of linear subspaces parametrized by S. We need to add a condition saying that
this is a well-behaved family; this condition is �atness. Then �at families of linear subspaces of Pn

parametrized by S are the same as morphisms from S to the Grassmannian. This characterizes
the Grassmannian.

This is a special case of a general problem: Suppose we have a functor from algebraic varieties
to sets. For example taking a variety S to the linear subspaces of Pn parametrized by S. We can
then ask to �represent� S; that is, can we �nd a variety V such that the functor is maps from S to
V .

Example 61 (Hirzebruch surfaces). Take (A2 − 0) × (A2 − 0) with coordinates (s, t) and (x, y)
respectively. Take the quotient by Gm ×Gm where Gm is the set of nonzero elements of k. Here
(λ, µ) acts as

(λ, µ)(s, t, x, y) = (λs, λt, µx, λ−1µy).

Denote the resulting so-called Hirzebruch surface by F .
If for example a = 0 λ acts only on the �rst two coordinates and µ only on the last two, so we

get (A2 − 0)/Gm × (A2 − 0)/Gm = P 1 × P 1.
In general there is a map from F to P 1 mapping (s, t, x, y) 7→ (s, t) ∈ P 1. The �ber (i.e. inverse

image) at a given point (s, t) is just P 1. If we have �xed s, t, we also �xed λ, so we just get points
of the form (x, λ−1y) modulo the scalars, which is P 1. Slightly more generally, P 1 can be written
P 1 = A1 ∪ A1, with s = 1, t = 1 respectively. Over the a�ne line s = 1, the inverse image is
isomorphic to P 1 × A1, and similarly for t = 1. So F is a �ber bundle: We have a map F → P 1,
and P 1 is covered by open subsets Ui and on each Ui the map looks like P1 ×Ui → Ui. Locally, it
looks like a product, but globally it's not if a 6= 0. This is the algebraic geometry analogue of the
Möbius band.

We haven't actually seen that this can be embedded in projective space. We do this for the
following more general case.

Example 62 (Scrolls). The scroll F = F (a1, . . . , an) is the quotient of (A2 − 0) × (An − 0) with
coordinates (s, t), respectively (x1, . . . , xn) by Gm ×Gm with coordinates (λ, µ), where now

(λ, µ)(s, t, x1, . . . , xn) = (λs, λt, λ−a1µx1, λ
−a2µx2, . . . ).

As before there is a map from F to P1 taking (s, t, x1, . . . , xn) to (s, t) ∈ P 1, where the �ber at
each point is now Pn−1.

We will now embed F into projective space. Assume that all ai are positive � this is harmless
as we can change µ to µ times some power of λ. Now look at all monomials of the form sitaj−ixj .
This gives us (a1 + 1) + · · ·+ (an+ 1) monomials. They are not invariant under Gm×Gm, but any
two are multiplied by the same constant under any element of Gm ×Gm, so (s0ta1x1 : s1ta1−1x1 :
· · · : s0ta2x2 : . . . ) gives a wellde�ned point of projective space P

∑
(ai+1)−1. Moreover we can see

that the image of each �be rof the map F → P 1 is a linear subspace of P
∑

(ai+1)−1. For n = 2,
we just recover the Hirzebruch surfaces.

10th lecture, September 28 2010

2.4 Toric varieties

Before going on from projective varieties to morphisms, we consider so-called toric varieties. It
turns out that projective varieties can be covered by open subsets that are a�ne. This is basically
because Pn is a union of n+ 1 copies of An, as we can take (x0 : · · · : xn) with xj = 1.

For example di�erential or Riemannian manifolds, the old view was that these were given as
subsets of Rn de�ned by zeroes of some equations. For example, the sphere x2 + y2 + z2 = 1.
On the other hand the current view is that we don't bother embedding into Euclidean space, but
instead it should locally look like Euclidean space (that is, it is covered by an �atlas of charts�).
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Projective varieties are similar. They are de�ned as in the �old� way: As a subset of projective
space. The current view (essentially due to Weil) is that varieties are �things�, looking locally
like a�ne varieties. For example, the Grassmannian G(m,n) was easy to cover by a�ne subsets
isomorphic to Amn but it was much harder to embed it in projective space.

Figure 11: The points of Zn.

Figure 12: A convex cone in Zn.

Look at the ring k[x1, x
−1
1 , . . . , xn, x

−1
n ], which is the coordinate ring of the a�ne ring An minus

the coordinate planes, which is the same as the product of n copies of A1− 0. A basis corresponds
to points of Zn (Fig. 11). Taking a convex cone with a point at 0 as in Fig. 12, we get a ring
with a basis of monomials in the cone. This ring is �nitely generated if the cone is polyhedral with
�nite number of rational faces (one could easily get something not �nitely generated by choosing
irrational slopes). Then, it is a coordinate ring of an a�ne variety.

Figure 13: A particular convex cone.

Example 63. The cone consisting of the �rst quadrant just gives xiyj , i, j ≥ 0, which just gives
k[x, y] and we get A2.

Consider the cone in Fig. 13. Put X = xy, Y = x, Z = xy−1, the ring is generated by X,Y, Z
with relations Y 2 = XZ. So we get the ring k[X,Y, Z]/(Y 2 = XZ), which is essentially a conical
singularity.

Bigger cones tend to correspond to smaller varieties. Look at Zn as above. We also have the
dual of Zn, and the dual of a smaller cone gives a bigger cone (see Fig. 14). Here, the dual of a
cone C is the set Ĉ of vectors in Zn with non-negative inner product with everything in C. For

each cone in the dual Ẑn, we get an a�ne variety, and if C1 ⊆ C2, we get a map Ĉ1 ⊇ Ĉ2, so we
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Figure 14: A cone and its dual.

get a map V1 → V2 between varieties (which now goes in the �right� direction). Now we divide up
Rn into a union of cones and glue together the corresponding varieties.

Figure 15: Three cones in Ẑ.

Example 64. Divide up the dual Ẑ in three cones C1, C2, C3 as in Fig. 15. The dual of C1 will
just be C1, and the same is true for C2. On the other hand, the dual of C3 will be all of Z. The
corresponding varieties are k[x] = A1, k[x−1] = A1 and k[x, x−1] = A−1 − 0 respectively. We now
glue together the two copies of A1 by gluing along the A1 − 0. Doing this we get P 1 = A1 ∪ A1

where the intersection of the two parts in the union is A1 − 0.

Figure 16: Another division of the plane.

Example 65. Divide the plane into the four quadrants (Fig. 16) obtaining 9 cones. In this case we
get P 1 × P 1.

Example 66. Divide the plane as in Fig. 16. This gives P 2.

This procedure gives an enormous amount of projective varieties. In fact covering Rn by any
�nite collection of convex rational cones gives some projective variety.
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Figure 17: Yet another.

Figure 18: An in�nite number of cones.

Example 67. One can construct weird objects this way. For example we can take an in�nite number
of cones as in Fig. 18 and apply the construction.

For more information on tonic varieties, see [Ful].

3 Morphisms of varieties

We now go to morphisms of varieties corresponding to Section 1.3 of [Har].
We begin by recalling some facts from category theory.

Example 68. An example of a category is the category of sets with objects the sets and morphisms
from A to B is the set of functions from A to B.

Example 69. Another one has objects the commutative rings and morphisms the homomorphisms
of rings.

Example 70. Objects are abelian groups and morphisms are the homomorphisms of groups.

Example 71. Objects are smooth manifolds and morphisms are smooth maps between smooth
manifolds.

Considering these four examples and extracting what they have in common, we get the following
de�nition of a category.

De�nition 72. A category is something that resembles the above:

(1) We have a set or class of objects.

(2) For each two objects A,B we have a set of morphisms from A to B.
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(3) For each object A there is an identity morphism 1A form A to A.

(4) If f : A→ B, g : B → C are morphisms, there is a composite morphism g ◦ f : A→ C.

(5) Composition is associative; (f ◦ g) ◦ h = f ◦ (g ◦ h).

(6) Identities behave in the obvious way.

The key points is that if you are considering any sort of mathematical objects, you should ask
what the morphisms between them are. We should thus ask what the morphisms between varieties
are. There are two di�erent sorts of morphisms:

(1) Regular maps: These are similar to smooth maps of manifolds.

(2) Rational maps: Maps that are �not de�ned everywhere�. For example 1 7→ 1/x is a rational
maps from A1 to A1; notice that this does not correspond to a function on the underlying
sets.

To de�ne morphisms (regular maps) between varieties, we �rst look at the case of di�erentiable
manifolds M,N . A morphism f : M → N is a function from M to N such that if g is a smooth
function on N , then g ◦ f is smooth on M ; in other words, smooth functions are smooth. We
can use the same idea to de�ne morphisms of a�ne varieties: We will �rst de�ne the analogue of
smooth real functions, called regular functions f : V → k, and a regular map will be a function
f : V →W such that if g is regular on W , then g ◦ f is regular on V . (Note as a warning that we
need to modify this for projective varieties, as there are not enough regular functions.)

De�nition 73. Regular functions on a�ne varieties are de�ned to be elements of the coordinate
ring. For example the regular functions on A2 are just elements of k[x, y].

We now turn to open subsets U of a�ne varieties V .

De�nition 74. A map f : U → k is called regular, if we can write f = g/h on U , where g, h are
regular on V , and h 6= 0 at any point p of U .

Example 75. If V = A1, U = A1 − 0, then 1/x is regular on U .

We should check that the above two de�nitions are compatible for a�ne varieties: Suppose
V = U1 ∪ · · · ∪ Un with Ui open (note that V is compact, so we always use �nitely many open
sets). Suppose f is regular on V by the second de�nition. This means that f = gi/hi on Ui. We
need to check that f is in the coordinate ring of V . We know that hi 6= 0 on Ui, and the Ui
cover V , so there is no point where all hi vanish. So the hi generate the unit ideal by the weak
Nullstellensatz, and we can write 1 = a1h1 + · · · + anhn for some ai in the coordinate ring. This
suggests that f = fa1h1 + fa2h2 + · · · (note that this is meaningless as we don't know yet that f
is in the coordinate ring). De�ne f = a1g1 + · · · angn. Now we need to check that f = gi/hi on
Ui. In other words, we should check that (a1g1 + · · · + angn)hi = gi, which follows from the fact
that higj = hjgi for all i, j, which proves that the de�nitions are compatible.

De�nition 76. Similarly, a function on an open subset of a (quasi-)projective variety is called
regular if it is regular on every open a�ne subset (so it is enough to check it for a cover of a�ne
subsets).

This makes (projective) varieties into ringed spaces.

De�nition 77. A ringed space is given by the following data:

(1) A topological space V .

(2) For each open set U , we have a ring R(U) (which we can sometimes (this fails for schemes)
think of as functions on U).

(3) If T ⊆ U , we have a morphism R(U)→ R(T ) (which we think of as restriction).
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(4) We have an identity morphism R(U)→ R(U) behaving in the obvious way.

(5) For S ⊆ T ⊆ U then R(U)→ R(S) is the composition R(U)→ R(T )→ R(S).

(6) If U is covered by U1, . . . , Un, then f ∈ R(U) is determined by its restrictions to Ui.

(7) If we are given fi ∈ R(Ui) with fi = fj on Ui ∩ Uj , then we can �nd f whose restrictions to
Ui are fi.

Example 78. The following are ringed space.

(1) For a di�erentiable manifold M , let R(U) be the smooth functions on U .

(2) For a topological manifold, let R(U) be the continuous functions on U .

(3) For a variety let R(U) be the regular functions on U .

Example 79. The regular functions on P 1: Cover P 1 by a�ne open subsets P 1 = A1 ∪ A1 as
before. The regular functions on P 1 are given by

(1) Regular functions f on the �rst A1.

(2) Regular functions g on the second A1.

(3) That are equal on A1 ∩A1 = A1 − pt.

For example, writing the points on P 1 as (x : y) we have f ∈ k[x], g ∈ k[y] that are the same on
k[x, y] = k[x, x−1]. The restriction of f to k[x, x−1], the coordinate ring of A1−pt, is a polynomial
in x, and the restriction of g is a polynomial in x−1, so if f = g, both of them must be constant, so
the regular functions on P 1 are just constants. The same is true on any projective variety (which
is why we spend time bothering with de�ning functions on open subsets of projective varieties).

De�nition 80. A morphism f : X → Y is a function from X to Y such that if g is a regular
function on a open subset U of Y , we get g ◦ f : f−1(U) is regular.

Note as before that this de�nition is wrong for schemes.

11th lecture, September 30th 2010

Last lecture we de�ned a regular function on an open set of a variety to be something locally of
the form f/g with g 6= 0. We de�ned a regular map f : V →W between varieties to be something
satisfying that the pullback of a regular function on an open subset is regular. We mentioned that
varieties are (locally) ringed spaces: On each open subset U , we are given a ring R(U) satisfying
a list of conditions. A morphism of a variety is a special case of a morphism of a ringed space.

Example 81. Suppose V is a real smooth algebraic variety. We can form lots of di�erent ringed
spaces out of this: We could form C0(V ) with R(U) the continuous functions on U , C1(V ) with
R(U) di�erentiable functions, and so on, as well as C∞(V ) the smooth functions, Cω(V ) the real
analytic or considering V as a ringed space with R(U) the regular functions. We have morphisms

C0(U)→ C1(U)→ · · · → C∞(U)→ Cω(U)→ V.

That is, we have di�erent structures (topological, smooth, analytic, algebraic) corresponding to
di�erent ringed spaces with underlying topological space V (the topology actually changes with
the last morphism, but ...).
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Example 82. Look at the curve y2 = x3 and the a�ne line A1 with coordinate t. There is a
morphism from A1 to y2 = x3 given by t 7→ (t2, t3). This is regular: We should check that the
pullback of a regular function is regular, but this is trivial; a regular function on y2 = x3 looks like∑
aijx

iyj . Pulling back we get
∑
aij(t

2)i(t3)j , which is obviously regular on A1. More generally,
any morphism de�ned by polynomials will be regular. Our map is also a homeomorphism on
the underlying topological spaces (it is bijective, and the open sets in both cases are empty or
complements of �nite sets). It is not, however, an isomorphism of varieties (de�ned below). This
can be seen for example by noting that the coordinate rings of regular functions are di�erent. The
coordinate ring of A1 is spanned by 1, t, t2, t3, . . . , while the coordinate ring of y2 = x3 is spanned
by 1, t2, t3, . . . and these two rings are not isomorphic (exercise).

De�nition 83. An isomorphism of varieties f means the obvious thing: If f : A → B, there
exists an inverse g : B → A, that is fg = 1A, gf = 1B .

Note that this de�nition makes sense for any category.
We can ask the following: Given varieties X,Y , what are the morphisms X → Y ? In general,

this is tricky to work out. There is one easy case:

Theorem 84. If Y is a�ne, then morphisms (regular maps) from X → Y are essentially �the
same as� ring homomorphisms O(Y )→ O(X), where O means the ring of regular functions (note
the change of directions).

As an application of this is that a category of a�ne algebraic sets is (equivalent to) the opposite
of a category of commutative algebras over k, �nitely generated and with no nilpotents.

De�nition 85. The opposite of a category is given by changing the direction of all morphisms. If
objects A,B in a category C has morphisms Mor(A,B) from A to B, then the morphisms from A
to B in Cop are Mor(B,A).

Proof of theorem. Suppose φ is a morphism from X to Y (algebraic sets). Then φ∗ takes regular

functions g on Y to regular functions gφ on X; X
φ→ Y

g→ k. So we get φ∗ : O(Y )→ O(X). This
works even if Y is not a�ne. So we have a map Mor(X,Y ) → Hom(O(Y ), (X )), and we want
to construct an inverse map Hom(O(Y ),O(X)) → Mor(X,Y ). Constructing this inverse needs
Y to be a�ne. Suppose Y is a�ne given by the zeros of some ideal I =

√
I in k[x1, . . . , xn], so

O(Y ) = k[x1, . . . , xn]/I. Suppose that h : O(Y )→ O(X) is a homomorphism. De�ne ψ : X → Y
as follows. Look at x1, . . . , xn ∈ O(Y ). We have h(x1), . . . , h(xn) ∈ O(X), so if p is any point of
X, then h(xi)(p) is an element of k. De�ne ψ(p) = (h(x1)(p), . . . , h(xn)(p)) ∈ kn. This gives a
map ψ : X → kn. We now have to check that the image is in y, that ψ is a regular map, and that
the map h 7→ ψ is the inverse to the map (X → Y ) 7→ (O(Y ) → O(X)). For example, that the
image is in Y , follows because h(I) = 0 (if a polynomial is in I, then it vanishes on (h(x1)(p), . . . )).
To check that ψ is a regular map, notice that xi ◦ ψ is regular on X for each xi on Y . So if
f(x1, . . . , xn) is regular on Y , then f ◦ ψ = f(x1 ◦ ψ, x2 ◦ ψ, . . . ) which is a polynomial in x1 ◦ ψ,
x2 ◦ ψ, . . . , so it is regular. So ψ∗ takes regular functions on Y to regular function on X, so it is
regular. The remaining steps are left as exercises.

Example 86. We consider algebraic groups: These are varieties G that are also groups so that
multiplication G×G→ G and inverse G→ G are morphisms of varieties.

For example, consider the additive group Ga. The variety is A1, the additive group of k. The
group law is given by (x, y) 7→ x+ y. The corresponding map on coordinate rings is the following:
Ga has coordinate ring k[t], and Ga×Gahas coordinate ring k[t1, t2], so we get a map k[t]→ k[t1, t2]
given by t 7→ t1 + t2. Writing k[t1, t2] = k[t]⊗ k[t], we get an example of a coproduct. If we have
a multiplication R ⊗ R → R, we have a notion of a coproduct R → R ⊗ R. So for example, the
coproduct is the induced map O(G)→ O(G)⊗O(G) for G an algebraic group.

Another example is the multiplicative group Gm. The underlying variety is A1 − 0 with group
operation (x, y) 7→ xy. The corresponding coproduct k[x, x−1]→ k[y, y−1]⊗k[z, z−1] maps x 7→ yz.
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Now look at the group SL2(k) of invertible 2 × 2-matrices with determinant 1. The co-
ordinate ring is k[a, b, c, d]/(ad − bc − 1). Again we will �nd the map R → R ⊗ R induced
by the product of SL2(k). We will de�ne a map R = k[a, b, c, d]/(ad − bc − 1) → R ⊗ R =
k[a1, b1, c1, d1, a2, b2, c2, d2]/(a1d1− b1c1−1, . . . ). Writing out the product of matrices, we see that
a 7→ a1a2 + b1c2, b 7→ a1b2 + b1d2 and so on. Similarly we can �nd a map R → R corresponding
to g 7→ g−1. This map is given by a 7→ d, b 7→ −b, c 7→ −c and d 7→ a. These maps R → R ⊗ R,
R → R make the ring R into a Hopf algebra; that is, basically a ring R with maps R → R ⊗ R,
R→ R satisfying several axioms (we should also somehow get a co-unit).

Example 87. We will see that the twisted cubic in P 3 is isomorphic to P 1. Recall that the twisted
cubic is the set of points (s3 : s2t : st2 : t3) in P 3, which is also the projective variety of the ideal
(wy = x2, xy = wz, xz = y2) in coordinates (w : x : y : z). We de�ne a map P 1 to the cubic by
(s : t) 7→ (s3 : s2t, st2, t3). (We can check this is regular by checking it is regular on to a�ne subsets
(1 : t), (s : 1).) In fact this map is a homeomorphism, but as above this is not enough to show it
is an isomorphism of varieties. We now de�ne a map from the cubic to P 1. We could try de�ning
(w : x : y : z) 7→ (w : x). This almost gives an inverse, but it is not de�ned on (0 : 0 : 0 : 1). A
second try would be (w : x : y : z) 7→ (y : z) or (x : y), but this has the same problem. Instead to
de�ne the map, we chop the cubic into two pieces. We cover the cubic by two copies of A1, and
de�ne a map on each of these and check these maps are the same on their intersection A1 ∩ A1 �
this is really the di�erence between de�ning morphisms of a�ne and projective varieties. The �rst
A1 consists of (w, x, y, z) with w 6= 0, which we map to (w : x). For the second one, z 6= 0, and we
de�ne the map to be (w : x : y : z) 7→ (y : z). We need to check that these two maps are the same
on the intersection w 6= 0, z 6= 0 of the cubic. So we have to check that (w : x) = (y : z), which
follows as wz = yx on the twisted cubic, and we get a map from the cubic to P 1. To check that
this is the inverse of the �rst map is left as an exercise.

The key point of the last example was that we cover projective varieties by a�ne ones and
de�ne the morphisms on a�ne open subsets.

Example 88. Recall that A1 − 0 is isomorphic to xy = 1 by an isomorphism x 7→ (x, x−1) with
inverse (x, y) 7→ x. We can then ask what a�ne variety A2− (0, 0) is isomorphic to. The answer is
none: We calculate the ring of regular functions on A2 − (0, 0); if A2 − (0, 0) was an a�ne variety,
this ring would be the coordinate ring of the variety. To do this, we use the same idea as before.
Cover A2− (0, 0) by open a�ne subsets A2−x-axis, A2− y-axis. The �rst one has coordinate ring
k[x, y, y−1] and the second one has coordinate ring k[x, y, x−1]. A regular function on A2 − (0, 0)
can be given as follows. It is the same as a regular functions on each of the two a�ne sets that
are the same on their intersection. That is, elements of k[x, y, y−1] and k[x, y, x−1] that coincide
in k[x, y, x−1, y−1], the coordinate ring of A2 with both axes removed. The only posibility is that
the two regular functions are the same and they should be a polynomial in x and y. So the ring of
regular functions O(A2−(0, 0)) is k[x, y] = O(A2), so the only possibility for A2−(0, 0) to be a�ne
is that A2 − (0, 0) ∼= A2, but they are obviously not the same, so A2 − (0, 0) is not isomorphic to
any a�ne variety. This is a general phenomemon: If one throws away a codimension one set from
an a�ne variety, the result is usually a�ne, while that is usually not the case, when you throw
away a codimension two set as in this case.

Example 89. The group GL2(k) acts on the projective line by mapping

(
a b
c d

)(
s
t

)
=

(
as+ bt
cs+ dt

)
,

where we write (s : t) ∈ P 1. This �xes a point (1 : 0) ∈ P 1, and we get a morphism GL2(k)→ P 1

by

(
a b
c d

)
7→ (a : c). This is a surjective map from an a�ne variety to a projective variety.

This is another example where the quotient of 2 a�ne algebraic groups is projective.
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12th lecture, October 5, 2010

3.1 Products of a�ne varieties

We continue giving more examples of morphisms by discussing products of a�ne varieties. The
�rst question is what a product is. As we have already discussed, it is not clear what A1 × A1

should be, as we are not taking the product topology. The answer is given by category theory:
The product A×B has the following properties:

(1) We have morphisms A×B → A and A×B → B.

(2) It is universal: If some object X has morphisms to A and B, there is a unique morphism
X → A×B, so that the following diagram commutes.

X

##F
FF

FF
FF

FF

))SSSSSSSSSSSSSSSSSS

��
44

44
44

44
44

44
44

4

A×B //

��

B

A

That is, A × B is a universal object with maps to A and B. Note that it is unique up to a
canonical isomorphism: Suppose X and Y are two products. Using the universal property we get
maps Y → X and X → Y , and we want to check that these are inverses of each others. The
composition of the two maps must be the identity by the uniqueness requirement.

Example 90. To see that products are not necessarily unique, we consider the product of two sets
A and B. This will be the set of ordered pairs (a, b), a ∈ A, b ∈ B � it is an easy exercise to
check that it satis�es the universal property. The question is what an ordered pair is, and there
are lots of di�erents de�nitions. For example (a, b) can be considered as {a, {a, b}}, {{a}, {a, b}},
or {{a, 1}, {b, 2}}. It really doesn't matter which one to use here, as all of the de�nitions have the
key universal property, so they give canonically isomorphic products.

We can also de�ne coproducts, which are the same but with all arrows reversed. That is, we
have a commutative diagram as below, where every time we have maps B → X and A→ X, there
should exist a map A ∨B → X making everything commute.

B

��

��
44

44
44

44
44

44
44

4

A //

))SSSSSSSSSSSSSSSSSS A ∨B

##F
F

F
F

F

X

Exercise 91. Check that the coproduct of 2 sets is the disjoint union of the sets.

Example 92. We will see that the coproduct of 2 commutative rings R,S is the tensor product
R ⊗ S. To do this, we check the universal property. We certainly have maps R → R ⊗ S, and
S → R⊗S given by r 7→ r⊗ 1, and s 7→ 1⊗ s respectively. Suppose that we have maps f : R→ X
and g : S → X. We need to show that there is a unique map R ⊗ S → X making everything
commute. This is the additive map taking r ⊗ s to f(r)g(s). It is left as an exercise to check that
this works.

Note that the coproduct of R,S depends on the category we work in: The coproduct of the sets
R,S is the disjoint union, thet coproduct of commutative rings R,S is R ⊗ S, and the coproduct
of general rings R,S is the free product of R and S. We will only really consider the second one.

Recall that the category of a�ne varieties is more or less the opposite of the category of �nitely
generated commutative rings over k with no nilpotents. Taking opposites turns products into
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coproducts. So, products of a�ne varieties corresponds to taking coproducts in the category of
commutative rings, which by the example above corresponds to tensor products. A product of
a�ne varieties can thus be given by �rst �nding the coordinate rings, then taking the tensor
product of the coordinate rings, and then taking some variety corresponding to this coordinate
ring. It doesn't really matter which variety you take, as they all have the universal property.

Exercise 93. Check that this is equivalent to the previous de�nition of a product of X ⊆ Am,
Y ⊆ An given by X × Y ⊆ Am+n with a suitable topology.

3.2 Products of projective varieties

We consider only Pn×Pm, as general projective varieties are then easy to do. Remember that we
have the Segre embedding Pm × Pn → Pmn+m+n

Theorem 94. The image in Pmn+m+n of the Segre embedding is a product of Pm and Pn (in the
category of quasi-projective varieties).

Proof. We need to show that

(1) we have maps from the Segre embedding to Pm and Pn, and that

(2) these maps are universal.

The key idea here is to cover everything by open a�ne subsets. To construct a map from the
image of Segre embedding to Pm, recall that the image is points of the form (z00 : z01 : . . . ) with
zijzkl = zilzjk. Pick an a�ne subset, say z00 6= 0. Now map (z00 : z01 : . . . ) to (z00 = 1 : z10 :
· · · : zm0) ∈ Pm. Suppose we chose a di�erent open a�ne subset, say z01 = 1. Then we map
(z00 : z01 : . . . ) to (z01 : z11 : · · · : zm1) ∈ Pm. We need to check that these two maps are the same
on the intersection. In other words, we should check that (z00 : z10 : · · · : zm0) = (z01 : · · · : zm1)
in Pm. This follows from the Segre relations zi0zj1 = zi1zj0. Similarly we can de�ne a map from
the Segre embedding to Pm on any open a�ne of the form zij 6= 0 and check that these are all
compatible on intersections zij 6= 0 and zkl 6= 0.

It now remains to check the universal property. That is, suppose we have maps X → Pm,
X → Pn, and let us see that we can �nd a map from X to the Segre embedding. In general,
a morphism X → Pn is complicated and involves line bundles on X. We avoid this problem by
instead considering only small open a�ne subsets ofX. We cover Pm and Pn by open a�ne subsets
Am, An. Now look at open a�ne subsets Y of X whose images lie in Am, An; these are just given
by coordinate functions and are easier to deal with. So we have maps Y → Am = {x0 : · · · : xm}
with xi = 1 and Y → An = {y0 : · · · : ym} with yj = 1. We can de�ne a map Y → Pmn+m+n by
mapping it to points with coordinates (x0y0 : x0y1 : · · · : xmym). This is in the image of the Segre
embedding, as we have

zijzkl = xiyjxkyl = xiylxkyj = zilzkj .

So we can cover X by open a�ne subsets Y and we have de�ned a map to the Segre embedding
on each Y . We then need to check that these maps are the same on intersections, which is left
as an exercise. This gives a map from X to the Segre embedding, and this is unique, which is an
exercise as well.

This is really a combination of to unrelated properties.

(1) We need to construct a product of Pm and Pn.

(2) We need to embed this product in projective space.

If we don't really care about embedding the product in projective space, we can construct a sort
of �abstract product� of A and B without worrying about embeddings into projective space like in
Fig. 19. Here we get 6 products of open a�ne subsets (the rectangles). Gluing these together we
get a product of A and B. This construction re�ects what we are going to do for general schemes
later, and we will not see the details here. The key idea is that we do not embed the product into
projective space but instead consider it as being covered by a�ne subsets.
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Figure 19: An abstract product of A and B. A is covered by two open subsets, and B is covered
by three.

3.3 Automorphisms

Example 95. We consider �rst automorphisms of An; that is, isomorphisms from An to itself.
First, consider A1. We �nd all regular maps A1 → A1. This is the same as regular functions

k[x]. Composition of regular maps correspond to composition of polynomials f(g(x)). Note that
the identity is just the map x (corresponding to x 7→ x). Note that deg(f ◦ g) = deg f · deg g,
so if deg(f ◦ g) = 1 then deg f = 1, deg g = 1, so the only regular maps A1 → A1 with inverses
are those corresponding to polynomials of degree exactly 1; that is, maps x 7→ ax+ b with a 6= 0.
These form a 2-dimensional non-commutative group.

Now look at An → An. There are some obvious automorphisms generalizing the above: We
can map X 7→ AX + B, where X = (x1, . . . , xn), A is an n × n matrix and B = (b1, . . . , bn).
However, these are far from being all automorphisms. For example, for A2 we have a map x 7→ x,
y 7→ y + p(x) for any polynomial p. This has an inverse x 7→ x, y 7→ y − p(x), and this gives an
in�nite dimensional abelian group of automorphisms. It is natural to ask for all automorphisms.
Endomorphisms are easy: We map xi 7→ fi(x1, . . . , xn) for polynomials f1, . . . , fn, and we want to
see when the set of the f1, . . . , fn gives an automorphism. We look at the Jacobian, det( ∂

∂xi
fj).

The Jacobian of f ◦ g is the product of the individual Jacobians. So if f is invertible, so is its
Jacobian; that is, det(

∂fj
∂xi

) ∈ k. One can ask if the converse holds, which is the notorious Jacobian

conjecture: If det(
∂fj
∂xi

) is in k, is the map xi 7→ fi(x1, . . . , xn) an automorphism? This is unsolved,
even in the 2-dimensional case.

Example 96. We consider now morphisms from P 1 to itself. Any morphism P 1 → P 1 restrics
to a map from an open subset of A1 (consisting of points not being mapped to ∞, where we
write P 1 = A1 ∪∞) to A1. These are regular functions on A1 minus some points (or the empty
set), which are given by rational functions f(x)/g(x) (or ∞ = 1/0), so morphisms P 1 → P 1 are
all birational functions (x : y) 7→ (f(x, y) : g(x, y)), with f, g homogeneous of the same degree.
Rational functions f(x)/g(x) are invertible if f, g have degree 1, so the automorphisms are given

by maps of the form x 7→ ax+b
cx+d , with det

(
a b
c d

)
6= 0. But x 7→ ax+0

0+a is the identity, so we need to

divide out by

(
a 0
0 a

)
, so

Aut(P 1) = PGL2(k) = GL2(k)/(diagonal matrices).

So, note that the automorphism group of the a�ne line over C is the group z 7→ ax+ b (where
a 6= 0), which is the same as the automorphism group of the complex plane to itself in complex
analysis (the morphisms from the complex plane to itself is the set of all holomorphic functions).

Similarly, automorphisms of the projective line over C are the �same as� automorphisms of the
Riemann sphere C∪∞ in complex analysis. In this case, all holomorphic maps from the Riemann
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sphere to itself are the �same as� morphisms from P 1 to P 1. This is a special case of Serre's paper
GAGA: For projective varieties, analytic things tend to be algebraic.

Example 97. The following is a standard counterexample in algebraic geometry. Look at the map
from A2 → A2 given by (x, y) 7→ (x, xy). The image is the set of points (x, y) such that x = 0
implies y = 0. That is, it contains all of A2, except from the part of the y-axis away from the
origin. In particular it is neither open nor closed, and it is not an a�ne variety. In other words,
the image of a map from an a�ne variety to an a�ne variety need not be a�ne. The image is in
fact constructible: This means that it is a �nite union of locally closed sets, and a theorem due to
Chevalley says that the image of a constructible set is constructible � the example at hand shows
that we cannot do much better than that.

Example 98. We now turn to the Ax�Grothendieck theorem: Suppose that f is an injective mor-
phism from a variety V (over an algebraically closed �eld) to itself. Then f is surjective. The
proof is amazingly simple.

(1) Note that the theorem is trivial over �nite �elds, as the number of points is �nite, and any
injective map from a �nite set to itself is surjective.

(2) It is still true over the algebraic closure of a �nite �eld: Just take the �nite �eld generated
by the coe�cients of the polynomials de�ning the map and the point we want to show is in
the image.

(3) Therefore it is true for all algebraically closed �elds. This follows from the following: Any
statement of a �rst order language of �elds that is true for some algebraically closed �elds of
characteristic p for all p > 0, is true for all algebraically closed �elds of characteristic 0. See
the next lecture for a more precise statement.

13th lecture, October 7th 2010

Last time we were looking at the Ax�Grothendieck theorem: If φ : V → V is injective, then it is
surjective. We noticed that this is true for algebraic closures of �nite �elds; essentially because
over �nite �elds, we can just count things. Therefore it is true for all algebraically closed �elds:

Suppose that S is a statement in �rst order language (made precise below) of �elds, then the
following are equivalent:

(1) S is true in some algebraically closed �eld of characteristic zero.

(2) S is true for all algebraically closed �elds of characteristic zero.

(3) S is true for some algebraically closed �elds in arbitrarily large characteristic p > 0.

(4) S is true for all algebraically closed �elds of su�ciently large characteristic (depending on
S).

This is a case of the Lefschetz principle: If you can prove �something� (meaning �rst order state-
ments) for complex numbers (using Riemannian geometry, Hodge theory, ...), then it is true for all
algebraically closed �elds of characteristic 0; using the geometric part wasn't essential, and can be
done algebraically instead.

Notice also that characteristic 0 looks like characteristic p for p �large�. Here is a method for
proving things in characteristic 0: First prove the thing in characteristic p (using counting, the
Weil conjectures, etc.). An example of this is the Ax�Grothendieck theorem. Another example is
Mori's so-called bend and break technique.

The �rst order language of �elds is (roughly) something where you can use

(1) Variables x1, x2, . . . taking values in the �eld.

(2) The logical symbols ∧,∨,¬,→,=, 6= and so on.
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(3) Operations +,−, ·, /.

(4) Quanti�ers �for all x such that�, �there exists x such that�.

The �rst order language of �elds is somewhat restricted, and for example we cannot do the
following:

(1) We cannot say �for all integers n�, so for example, how do we say that the �eld in question
has characteristic 0? For characteristic p this is easy, since 1 + 1 + · · ·+ 1 = 0, but we can't
say something like ∀n > 0, n 6= 0. Instead we say 1 + 1 6= 0, 1 + 1 + 1 6= 0, and so on, needing
an in�nite number of statements.

(2) We cannot say �for all subsets X of a �eld, ...�. This is instead contained in so-called second
order logic.

(3) We cannot say what the cardinality of the �eld is, if it is in�nity.

It turns out that the Ax�Grothendieck is a countable collection of �rst order statements, and
we can use the above method. A standard reference for this method is Chang and Keislev. The
key idea of how to transfer characteristic 0 to characteristic p is the following: The theory of
algebraically closed �elds of some �xed characteristic is complete, meaning that any statement can
be proved either true or false from the axioms. This by the way means, that there is an algorithm
for �nding proofs or disproofs of any statement by enumerating all sequences of symbols. It might
take some time for the algorithm to terminate though.

So why is the theory complete? The key point is that the theory of algebraically closed �elds
in some characteristic is �uncountably categorized�. That is, if you have an uncountable cardinal
k, there is up to isomorhpism only one algebraically closed �eld of a given characteristic with
this cardinality. This �eld is the algebraic closure of Fp(adjoin k indeterminates). For countable

cardinality, we could have more �elds with a given cardinality; for example Q,Q(x1),Q(x1, x2), . . . .
If a �eld is categorized in some cardinality, it is complete � this is an easy corollary of Gödel's
completeness theorem.

Suppose we have a proof of S for characteristic 0 with the axioms for characteristic 0: 2 6= 0,
3 6= 0, 5 6= 0, and so on. Any proof has �nite length, so it uses only a �nite number of the
axioms 2 6= 0, 3 6= 0, . . . . If it uses 2 6= 0, . . . , p 6= 0, then all axioms are satis�ed for any �eld of
characteristic p > 0. So the statement is also true for all such �elds. We will leave it at that.

3.4 Rational maps

We �rst de�ne rational functions on a variety (these will be the analogue of meromorphic functions).
For a�ne varieties it is easy: We look at the coordinate ring O(Y ) of Y , which we can think of as
polynomials on Y . O(Y ) is an integral domain as Y is irreducible, so we take its quotient as the
�eld of rational functions.

Example 99. Take Y = A1. The coordinate ring is O(Y ) = k[x], so the ring of rational functions
is k(x), consisting of elements like (7x2 + 3x+ 2)/(5x9 + 8).

Note that there is no analogue of rational functions for smooth manifolds.
For projective varieties the above approach doesn't work; O(Y ) is too small � usually it's just

k. An alternative de�nition is the following:

De�nition 100. A rational function is given by a regular function f on a dense open subset U
of Y . Note that di�erent rational functions can correspond to di�erent open subsets. We say that
two rational functions (f1, U1) and (f2, U2) are the same if f1 = f2 on U1 ∩ U2.

For varieties V , rational functions form a �eld: If (f, U) is rational, f = 0 on a closed set, f 6= 0
on an open set, which is dense if f 6= 0 as V is irreducible, so 1/f is de�ned on a dense open set.
If V is not irreducible, rational functions will not form a �eld though.

At this point, the lecture was interrupted by a �re alarm.
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14th lecture, October 12 2010

Last time, we de�ned a rational function on some variety V as something represented by a regular
function on some dense open set U . Recall that (f1, U1) and (f2, U2), if f1 = f2 on U1 ∩ U2. We
write k(V ) for the ring of rational functions on V . This is an integral domain, if V is irreducible.
In fact, k(V ) is the direct limit (which we won't de�ne) of O(U) with U ⊆ V open and dense.

Similarly, we can de�ne a rational map f : X → Y to be given by a morphism from a dense
open subset of X to Y , where, as above, two such maps are considered the same, if they agree on
their intersection. One thing to be a little bit careful about: The rational maps do not form the
morphisms of a category, since composition is not always de�ned; for example the map f : A1 → A1

taking any point x to 0 can't be composed with x 7→ 1/x. What goes wrong here is that the map f
is degenerate in some sense, meaning that the image is not dense. We call a rational map dominant,
if the image of some dense open set contains a dense open set. Now, dominant rational maps form
the morphisms of a category. Two varieties are called birational, if they are isomorphic in the
category, so they have dense open subsets, that are isomorphic as varieties.

Example 101. Consider A1, P 1, xy = 1 in A2, or x3 = y2 in A2. These are all birational. For
example, the map A1 → {x3 = y2} given by t 7→ (t2, t3) has an inverse (x, y) 7→ y/x, de�ned for
(x, y) 6= (0, 0), so A1 − {0} is isomorphic to {x3 = y2} − (0, 0). However, the varieties are not
isomorphic, since {x3 = y2} has a singularity in (0, 0).

Similarly A2, P 2, P 1 × P 1, A2 − (0, 0) are all birational but not isomorphic.

Example 102. The a�ne line A1 is not birational to x3 + y3 = 1 (but it is in fact birational to
x2 + y2 = 1). We will show, that there is no dominant birational map from A1 to x3 + y3 = 1.
Suppose t 7→ (x(t), y(t)) is a dominant birational map. Then x(t),y(t) are rational functions at t,
not constants, such that x(t)3 + y(t)3 = 1. The question is, whether or not we can �nd rational
functions x(t), y(t) satisfying this equation. Clear the denominators to get f(t)3 + g(t)3 = h(t)3,
with f, g, h non-constant polynomials. Factor the left hand side to obtain

(f(t) + g(t))(f(t) + ωg(t))(f(t) + ω2g(t)) = h(t)3,

with ω3 = 1, ω 6= 1, ω2 + ω + 1 = 0. Polynomials in k[t] form a unique factorization domain
and every unit is a cube (since k is algebraically closed). We can assume that f, g, h are pairwise
coprime, so all three terms on the left are cubes. So f + g = h3

0, f + ωg = h3
1 and f + ω2g = h3

2

for some h0, h1, h2. Eliminate f, g from these to get a linear relation between h3
0, h

3
1, h

3
2. So we

get a solution ah3
0 + bh3

1 = ch3
2, for a, b, c ∈ k, and deg h0, h1, h2 < deg h, so we �nd a solution to

x3 + y3 = z3 of smaller degree. By induction on degree, there are no nonconstant solutions.
The same proof works for x(t)n + y(t)n = 1 for n > 2, so we can solve Fermat's last theorem

for polynomials over the rationals for all cases except polynomials of degree 0.
There is in fact a one line proof of the above with a small catch: Any map from a curve to one

of higher genus is constant. E.g. from A1 which has genus 0, and x3 + y3 = 1 has genus 1. The
catch is that we didn't de�ne genus.

Example 103. We will show that the a�ne line A1 is not birational to any elliptic curves of the
form y2 = x3 + ax+ b using complex analysis. Recall the Weierstrass ℘ function. We will use it to
construct an isomorphism from a complex torus C/Λ to some curve of the form y2 = 4x3−g2x−g3.
Here Λ is a lattice in C of all complex numbers of the form mω1 +nω2, where ω1, ω2 are �xed and
m,n are integers. Topologically, C/Λ is just the torus S1 × S1. Now ℘(z) is an elliptic function,
meaning that it's doubly periodic, ℘(z + ω1) = ℘(z), ℘(z + ω2) = ℘(z), so ℘(z + λ) = ℘(z) for all
λ ∈ Λ. Any holomorphic elliptic function is bounded, so it is constant by Liouville's theorem. We
will try to construct a meromorphic elliptic function.

Take any function f(z). Form F (z) =
∑
λ∈Λ f(z + λ). This is formally doubly periodic, but

the sum might not converge. For example, if f(z) = 1/z,
∑

1
z+λ diverges drastically. Try instead

f(z) = 1/z2 and ℘(z) =
∑
λ∈Λ

1
(z+λ)2 . It doesn't quite converge. The convergence of

∑
1

(z+λ)2 is

like the convergence of
∑
n≥1

c·N
k·N2 = c

k

∑
n≥1

1
n , which almost converges. In the case with ℘, we
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make it converge by �renormalizing� it by subtracting an �in�nite� constant: de�ne

℘(z) =
1

z2
+
∑
λ6=0

(
1

(z + λ)2
− 1

λ2

)
.

Now, it is not obvious that ℘(z) is invariant under z 7→ z + λ. This is easy to �x though, and is
done in any complex analysis book.

In summary, the function ℘ is doubly periodic, and we will �nd its poles. The only singularities
are at z = λ for λ ∈ Λ. Since it is periodic, we only need to know what the singularity at 0 looks
like: We have ℘ = z−2 +O(z2). Now, notice that ℘′(z) = −2z−3 +O(z), so

(℘′(z))2 = 4z−6 + ∗z−2 + ∗+ · · · ,
4(℘(z))3 = 4z−6 + ∗z−2 + · · · ,

where ∗ means some constant. Thus ℘′(z)2−4℘(z)3 = ∗z−2 +∗, so ℘′(z)2−4℘(z)3 +g2℘(z) = O(1)
at z = 0, and the left hand side is doubly periodic and holomorphic, so it is a constant g3. We
have thus found a di�erential equation

℘′(z)2 = 4℘(z)3 + g2℘(z)− g3.

This is the same form as y2 = 4x3 + g2x − g3, which is some a�ne curve in the plane. So we get
a map from C/Λ to the projective curve, by mapping z 7→ (℘(z), ℘′(z)) = (x, y). and λ ∈ Λ maps
to (∞,∞). We thus get an isomorphism from C/Λ to the curve y2z + 4x3 + g2xz

2 − g3z
3. Note

that this isomorphism is not algebraic; it cannot be described in terms of polynomials and so on.
Note also that y2 = 4x3− g2x− g3 is not birational to A1, because it is the torus S1×S1 (minus a
�nite number of points), while A1 looks like a sphere minus a �nite number of points. Such things
are never homeomorphic.

Trying to integrate the equation ℘′(z)2 = 4℘(z)3 + g2℘(z)− g3, we �nd

d℘

dz
=
√

4℘3 − g2℘− g3,∫ ℘

a

d℘√
4℘3 − g2℘− g3

=

∫
dz = z + const.

This integral comes from �nding the arc length of an ellipse, which is given by
∫ θ

0
dt√

t3+at+b
. Thus

℘ is the inverse of the elliptic integral, hence the name �elliptic curve�.

Example 104. We will show that cubic surfaces are rational (meaning birational to An) and mostly
have 27 lines in them. Warning: The argument is very sketchy and resembles algebraic geometry
as it was done in the �rst part of the 20th century.

A cubic surface is something of the form w3 +x3 +y3 +z3 = 0 in P 3 � that is, something de�ned
by a cubic polynomial. Take 6 points P1, . . . , P6 in A

2 (or P 2) in general position, meaning that the
author is too lazy to say exactly what he means � in this case it means no 3 points on a line and no
6 on a conic. The space of all cubics a300x

3 +a210x
2y+ · · ·+a003z

3 is 10-dimensional. The space of
cubics vanishing on P1, . . . , P6 has dimension 10− 6 = 4 (usually). Take a basis f1, f2, f3, f4 of the
cubics vanishing on P1, . . . , P6. Now map (x, y) 7→ (f1(x, y), f2(x, y), f3(x, y), f4(x, y)) ∈ P 3. The
image is some hypersurface. To �nd the degree of the hypersurface (i.e., informally the number
of intersections with a �generic� line). Say f1 = f2 = 0, then f1, f2, which are of degree 0, have
3 · 3 = 9 points of intersection; 6 points are P1, . . . , P6. The images of the other 3 points are the
intersection of the hypersurface with the line (0, 0, ∗, ∗) ∈ P 3, so the degree of the image of A2

is a degree 3 hypersurface. So, 6 general points in P 2 gives a cubic hypersurface in P 3. Look
at the dimensions of �moduli spaces� of both sides. The space of cubic surfaces has dimensional
20− 1 = 19 (since there are 20 possible coe�cients in

∑
aijklx

iyjzkwl = 0), and is isomorphic to
P 19. P 3 has automorphism group PGL4(C), which has dimension 4 · 4− 1 = 15. So we really only
have a space of dimension 19−15 = 4 of cubic surfaces up to isomorphism. For the 6 points in P 2,
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the dimension is 2 · 6 = 12, and the automorphism group of P 2 is PGL3(C), which has dimension
8. So now the dimension of the space of isomorphism classes of 6 points in P 2 has dimension
2 · 6− 8 = 4. �So� this makes it plausible that every cubic surface is birational to P 2.

Now to the 27 lines: To construct the lines, suppose that the cubic surface is obtained as above
by picking 6 points P1, . . . , P6, then 27 points can be obtained as follows:

(1) 6 lines come from �blowing up� (which we will de�ne next lecture) 6 points.

(2) 15 lines are images of Pi, Pj .

(3) 6 lines are the image of the conic through 5 of 6 points.

Example 105. Here's an example of what happens in higher dimension. Consider a cubic 3-fold,
such as v3 +w3 + x3 + y3 + z3 = 0 in P 4. These are unirational: There is a a �nite to 1-map from
Pn to a cubic 3-fold. Gri�ths and Clemens showed in 1974, that this is not rational. Castelnuovo
showed that unirational surfaces are rational.

15th lecture, October 14th 2010

3.5 Blow-ups

Today, we will consider giving examples of birational maps given by �blowing up�. The idea is
to replace a point of An by a copy of Pn−1. The blow up the point (0, 0, . . . ) ∈ An is given by
points (x1, . . . , xn) × (y1 : · · · : yn) ∈ An × Pn−1 such that xiyj = xjyi for all i, j. Denote the
set of these by Z. There is an obvious projection Z → An. What is the inverse image of a point
(x1, . . . , xn) ∈ An? If (x1, . . . , xn) 6= (0, . . . , 0), there is just one point in Z mapping to it. If on the
other hand (x1, . . . , xn) = (0, . . . ), the inverse is the whole of Pn−1, so (0, . . . , 0) ∈ An has been
replaced by a copy of Pn−1. Pn−1 is covered by a�ne spaces y1 6= 0. We may as well put yi = 1,
and on this , the blow-up is given by xj = yjxi, so we get new coordinates y1, . . . , yi−1, xi, . . . , yn.
So we have replaced xj by yjxi.

Example 106. Consider C = (x2
2 = x3

1) in A2. We will blow up A2 at (0, 0) and look at the image
inverse of C in the blow-up � see the picture in the blow-up section of [Har]. The blow-up Z is
covered by 2 copies of A2, y1 = 1 or y2 = 1. On one A2 we put x2 = y2x1, and on the other
x1 = y1x2.

Considering the �rst one, we get (y2x1)2 = x3
1. So the inverse image of C is x2

1(y2
2 − x1) = 0,

and has two components x1 = 0 (the line P 1 mapping to 0), and y2
2 = x1 (which is a parabola).

What is interesting is that the curve C behaves badly at the origin: The inverse image is the union
of a line and a parabola; now the parabola is smooth everywhere, so blowing up at 0 has resolved
the singularityu of C.

Let's look at the other chart x1 = y1x2. Here we get x2
2 = x3

1 = (y3
1x

3
2), so x2

2(1 − y3
1x2) = 0,

which again gives a P 1 and a nonsingular curve.

Example 107. Consider x2 + y2 = z2 in A3. This has a conical singularity at the origin. We will
blow up A3 at (0, 0, 0), and look at the inverse image. So replace (0, 0, 0) by a copy of P 2 covered
by 3 copies of A2 as before:

(1) Put x = zs, y = zt.

(2) Put y = zt, z = xt.

(3) Put x = ys, z = yt.

Consider the �rst one. We get (zs)2 + (zt)2 = z2, so z2(1− s2 − t2) = 0. The z2 = 0 gives a copy
of P 2 above (0, 0, 0), and 1− s2 − t2 = 0, which is a smooth cylinder.

For the second one, we get x2 + (xs)2 = (xt)2, so x2(1 + s2 − t2) = 0, so the x2 is the P 2 as
before, and 1 + s2 − t2 = 0 gives a hyperbola (times the x-axis), which again is smooth.

The last case is identical.
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Example 108. Here is an example, where blowing up does not get rid of the singularity. Take
y8 = x5, which is singular at (0, 0), and we try to blow it up. As before there are 2 cases to do:
y = xt and x = yt. On the �rst chart, (xt)8 = x5, which gives x5(x3t8 − 1) = 0. This gives an
x5 = 0, which is P 1 as before, and a x3t8 = 1, which is actually a smooth curve as before. On
the other chart, y8 = (yt)5, or y5(y3 − t5) = 0. This gives a P 1 for the y5 = 0 and a y3 = t5,
which is still singular � however the singularity is �better� than the one we began with, as the
exponents have gone down. So we blow it up again getting y = st, and t = sy. The �rst one gives
a t2(s3 − t2), which is still singular, and the second one a y3(1− s5y2) = 0, which is non-singular.
Blowing it up once more, we get rid of the singularity: Blowing up A2 3 times gives a variety Z
such that the inverse image of y8 = x5 is a union of a non-singular curve and 3 copies of P 1 (note
that the inverse image is singular, as the 4 curves intersect).

Example 109. Consider the Whitney umbrella (or pinch point) given by xy2 = z2.5 This has a
singularity at (0, 0, 0) and along the axis y = z = 0. Instead of blowing up at (0, 0, 0), we blow up
along y = z = 0. This means that we take the subset of points (x, y, z)× (s : t), such that yt = zs.
The inverse image of (x, y, z) looks as follows: If (y, z) 6= (0, 0) the inverse image is a point. If
(y, z) = (0, 0), the inverse image is a P 1. So we have replaced every point of the x-axis by a copy
of P 1.

We cover P 1 by 2 copies of A1, s = 1 or t = 1. For s = 1, we get z = yt, and the Whitney
umbrella becomes xy2 = z2 becomes xy2 = y2t2 or y2(x − t2) = 0, so y = 0 gives a P 1 times the
x-axis, and x = t2 gives a parabola times the y-axis, which is nonsingular. For t = 1, we get y = zs,
and xy2 = z2 becomes x(zs)2 = z2, so z2 = 0 or xs2 = 1, and again the last one is nonsingular.

So, blowing up the x-axis resolves the singularity.

A natural idea is to repeatedly blow-up along the �worst� singularities to resolve a singularity.
This does not work naively for the Whitney umbrella: In this case, the origin is the worst singularity,
but if we blow up at (0, 0, 0), the following happens. As before, there are three possibilities. First
o�, y = sx, z = tx, secondly x = sy, z = ty, and lastly x = sz, y = tz. In each of them we blow
up by 3 coordinate charts. We obtain x(sx)2 = (tx)2, syy2 = (ty)2, and sz(tz)2 = z2 respectively.
These give x2(s2x − t2) = 0, sy2 = t2, and szt2 = 1. While the last two give nonsingular curves,
the �rst one doesn't, and the singularity is exactly the one we started with.

Example 110. We want to blow up the real a�ne plane at (0, 0) and see what surface we get.
The set of lines through 0 is P 1(R), which is S1. The blow-up is R × P 1(R) with coordinates
(x, y) × (s : t), xt = sy. Consider the projection to S1. The inverse image of (s : t) is a line
xt = sy, so the blow-up is a line bundle over S1. Examples of such are the cylinder or the Möbius
bundle. In fact in our case we get the last one (which is left as an exercise in geometrical intuition).

There are also more general versions of blow-ups: We can blow up a point in any variety, and
we can blow up any subvariety of any other variety. More generally we can blow up any sheaf of
ideals over any scheme, or we can blow up any sheaf of graded algebras over any scheme.

Roughly, blowing up a point corresponds to replacing the point by a copy of the projective space
of its tangent space. Blowing up a subvariety corresponds to replacing each point of a subvariety
by the projective space of its normal space. For the last one, given a graded algebra at each point,
remember that a graded algebra corresponds to a projective variety, and we replace each point by
a projective variety.

Example 111. Now we will discuss the Atiyah �op introduced by Atiyah in 1958. The name was
introduced by Miles Reid. The �op is a special sort of birational map, of which nontrivial examples
only exist in dimension greater than or equal to 3.

Consider the 3-dimensional variety xy = zt in A4. It's singular at the origin (see next week)
and non-singular everywhere else. We blow up (0, 0, 0, 0) to eliminate the singular point. Consider
therefore (x, y, z, t)× (X : Y : Z : T ) with relations xY = yX etc. We consider the inverse image
of xy = zt intersected with P 3, which is just XY = ZT in P 3. This is a non-singular quadric in
P 3 isomorhpic to P 1 × P 1. There are two ways to project this to P 1. We can collapse to P 1 in
two ways:

5See http://en.wikipedia.org/wiki/Whitney_umbrella for a picture � that's better than I'd be able to do it.
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with the inverse image of 0 being as follows:

P 1 × P 1
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0
Blowing up along the line y = t = 0, we cover by 2 coordinate charts. A typical one for xy = zt

is xZ = zX, tZ = yX. Considering (x, y, z, t) × (X : Z) with X = 1 we get z = xZ, y = tZ, so
xtZ = xZt. This is just a�ne 3-space. which is nonsingular. So the point is that both the A1 and
the A2 in the above diagram are nonsingular. We introduce a birational map called the Atiyah
�op:

A3
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// A2

{{vv
vv

vv
vv

v

xy = zt

We can think of it as cutting out one copy of P 1 and gluing it back in another way. This causes
problems: We would like to �nd a canonical minimal resolution of a singular variety V . That is, we
would like to �nd X → V with X nonsingular such that X is as small as possible. This is possible
in dimensions 1 and 2, but the Atiyah �op shows that it is impossible in dimension 3. Both A1

and A2 are resolutions that are �minimal� neither factors through the other by a regular map. The
�op is only a birational map (and any two resolutions will be birational). In other words, there is
no canonical minimal resolution in dimension greater than or equal to three that all others factor
through. One solution to his is to allow �mild� singularities: The idea is to �nd a canonical minimal
variety X → V such that X only has very mild (so-called terminal) singularities. Another solution
is to try to show that all minimal resolutions are related by ��ops�.

16th lecture, October 19th 2010

4 Singular points

In today's lecture, we will start on section 5 of [Har], which is about singular varieties. So, what is
a singular point of a variety? It is sort of obvious, when you see it. For example for y2 = x3, there
is something going on at the origin, and for xy = 0, there is something going on at the origin as
well.

We describe singular points in terms of tangent spaces of varieties.

De�nition 112. The tangent space at a point p of V is de�ned by the vanishing of linear parts
of the equations de�ning V near p. Take (0, 0, . . . ) by linear change of variables xi → xi + ai.
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Consider for example y2 = x3. The linear part is 0 at (0, 0), so the tangent space is all of k2.
If for example y = x2, the linear part is y = 0.

De�nition 113. A point is called singular if its tanget space has the wrong dimension; in other
words, its dimension is greater than the dimension of V .

Example 114. If V is a hypersurface f(x1, . . . , xn) = 0 of dimension n− 1, the singular points are
where f = 0, ∂f

∂xi
= 0 for all i.

Proposition 115. The set of singular points is closed.

Proof. To see this, suppose that V is given by f1 = f2 = · · · = fm = 0. Then the dimension of the

tangent space is given in terms of the rank of the matrix
(
∂fi
∂xj

)
. So the dimension of the tangent

space being bigger than the dimension of V corresponds to the rank of this matrix being less than
or equal to something. The condition that the rank is less than or equal to something is just the
condition for a determinantal variety, which is closed as in an early lecture.

Proposition 116. The set of non-singular points in a variety is non-empty.

There appears to be a counter-example to this: Look at the Fermat curve x3 + y3 = 1. The
singular points are given by x3 + y3 = 1, 3x2 = 0, and 3y2 = 0. No points (x, y) satisfy this if
char k 6= 3. If char k = 3, we see that all points are singular. This seems to be a counter-example
to the fact, that not all points are singular. What goes wrong is that in char k = 3, we have
(1− x3 − y3) = (1− x− y)3, so the equation did not de�ne a reduced ideal. (In terms of schemes,
in char k = 3, the scheme x3 + y3 = 1 has no nonsingular points.)

Proof. Let us prove the proposition for varieties. First, we can reduce to the case of hypersurfaces,
as every variety is birational to a hypersurface. Suppose the variety is f(x1, . . . , xn) = 0. If all
points are singular, then ∂f

∂xi
= 0, whenever f = 0. So, as f is irreducible, we have f | ∂f∂xi , but

deg f > deg ∂f
∂xi

, so ∂f
∂xi

= 0 on all of An. If all derivatives of f vanish, this does not imply that f is

constant; the usual counter-example for char k = p is f = xp1+xp2. However, if all derivatives vanish,
then f is a polynomial in xp1, x

p
2, . . . , where char k = p, so f = g(xp1, x

p
2, . . . ) = g(x1, x2, . . . )

p, so f
is not irreducible.

So non-singular points form an open non-empty set, so they are dense in any variety. Over
R and C, varieties correspond to smooth manifolds at non-singular points. This follows from the
inverse function theorem. The converse isn't quite true though: The curve y2 = x3 is still a
topological manifold at the singular point.

There is a problem with the de�nition of singular points: It seems to depend on the embedding
of the variety into a�ne space An. If f : V1 → V2 is an isomorphism, does it take singular points
of V1 to singular points V2? This is by no means obvious, and we will �nd a better de�nition, that
of a Zariski tangent space to a variety at a point, that is in some sense more �intrinsic�, meaning
that it does not depend on the embedding, and which also works for all schemes.

De�nition 117. The Zariski tangent space of a variety V at a point p is (m/m2)∗ where m is the
maximal ideal of the local ring at p.

Recall that the local ring at a point is roughly functions de�ned �near� the point p. For example,
the local ring of A1 at 0 is equal to the set of all rational functions f(x)/g(x), with g(0) 6= 0; these
are regular functions in some neighborhood of 0. A slightly more formal de�nition is the following:
The local ring is given by the direct limit of all open neighborhoods U of p of all regular functions
on U .

Let us check that the above de�nition corresponds with the previous de�nition of a tangent
space. We can assume that p is the point (0, 0, . . . , 0) in An. The local ring is the ring of all rational
functions f/g, g(0) 6= 0, quotient the ideal of functions vanishing on V . The maximal idealm of the
local ring of functions vanishing at 0 is generated by x1, . . . , xn, and m

2 are generated by degree 2
monomials xixj . So the Zariski cotangent space m/m

2 is given by (x1, . . . , xn)/((xixj), fk), where
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V is given by f1, . . . , fk = 0. This is equal to a vector space spanned by x1, . . . , xn modulo relations
given by the linear parts of f1, . . . , fn. This is equal to the dual of kn on which the linear parts of
f1, f2, . . . vanish, which is the previous de�nition of tangent space.

There are several other ways to look at the tangent space. For smooth manifolds, the tangent
space is sometimes de�ned as equivalence classes of �short smooth curves� at a point � see Fig. 20.
There is an analogue of this in algebraic geometry: The analogue of a short smooth curve is the
scheme with coordinate ring k[ε]/ε2, whose elements are of the form a point together with another
point �in�nitely close�. A map from this �short smooth curve� to a variety V with coordinate ring
R corresponds to homomorphisms of rings R → k[ε]/ε2. Let us �nd homomorphisms over the
point (0, . . . , 0). If R = k[x1, . . . , xn]/I, a homomorphism f should map xi to some element of k[ε]
with constant term 0, so xi 7→ aiε, ai ∈ k. The linear parts of the generators of I map to 0. So,
the homomorphisms R→ k[ε]/ε2 over R→ k corresponds to the tangent space.

Figure 20: Two curves going through the point p � these are considered equal, since they are equal
in the vicinity of p � they have the same tangent.

There is a third way to de�ne the tangent space. We consider �rst what is happening on
manifolds. Let M be a smooth manifold. It has two vector bundles over it, given by tangents and
cotangents. Vector �elds form a module over the ring of smooth functions, given by multiplying
the vector �eld in each point by the value of the function in that point � so do cotangent vector
�elds. There is a linear map d from smooth functions to 1-forms (which are cotangent vector
�elds). In local coordinates, this maps f 7→ ∂f

∂x1
dx1 + ∂f

∂x2
dx2, satisfying d(fg) = f(dg) + (df)g.

We can de�ne the module of 1-forms as a �universal� module M over smooth functions S, with a
map d : S →M satisfying the relations above (the linearity and the Leibniz rule).

Example 118. Take S = k[x1, . . . , xn] (an approximation to smooth functions on Rn). The module
M is generated by elements df (with f a polynomial) with relations as above. We notice that
d1 = 0, and d(fg) is in the module generated by df and dg, so M is generated by dx1, . . . , dxn. In
fact, M is the free module with basis dx1, . . . , dxn, because we can de�ne a map d form S to this
free module by putting df =

∑ ∂f
∂xi

dxi and check that it satis�es the relations above.

So, from a module A of cotangent vector �elds M , we can construct the module of tangent
vector �elds as the �dual� HomS(M,S), and we can get tangent and cotangent spaces at a point
from these modules, by (say) localizing and taking a quotient by a maximal ideal. The nice thing
about this construction is that it works for arbitrarity schemes: It gives a sheaf of contangent or
tangent vectors for any scheme.

Example 119. We will now examine the singularity x2 + y3 + z5 = 0. Here's the background of
this singularity: It is one of the du Val singularities, also called Kleinian singularities, rational
double points, simple surface singularities, 2-dimensional canonical singularities, their importance
being illustrated by the number of di�erent names they have. These are quotients of C2 by a �nite
subgroup G of SL2(C). For example, the group could be G = Z/kZ acting as (x, y) 7→ (ζx, ζ−1y),
where ζ = e2πi/k. The coordinate ring is going to be functions in C[x, y], invariant under the group
G. If G = Z/kZ as above, g(xmyn) = ζm−nxmyn, so the coordinate ring has a basis consiting of
elements xmyn with k | (m−n). From the following diagram it is clear that the ring has generators
X = xk, Y = yk and Z = xy, with the relation Zk = XY , which is called a du Val singularity of
type Ak−1.
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x2y2 xk+2y2

xy xk+1y . .
.

1 xk x2k

There is a complete list of �nite subgroups of PSL2(C); namely the following, listed together
with their generators:

• cyclic An, X
2 + Y 2 + Zn+1 = 0,

• dihedral Dn, X
2 + ZY 2 + Zn−1 = 0,

• tetrahedral E6, X
2 + Y 3 + Z4 = 0,

• octahedral E7, X
2 + Y 3 + Y Z3 = 0,

• icosahedral E8, X
2 + Y 3 + Z5.

We look at the stucture of x2 +y3 +z5 = 0, and we wish to �nd a resolution of this (for char k = 0),
and we do this by blowing up at the singular points. Di�erentiating with respect to x, y, and z we
see that the only singular point is (x, y, z) = (0, 0, 0). Blowing up, we now look at x, y, z, (x1 : y1 :
z1) ∈ C3 × P 2 with relations xy1 = yx1 etc. We cover P 2 by three copies of A2 given by x1 = 1,
y1 = 1, or z1 = 1.

For x1 = 1, yx1 = xy1, so y = xy1 and similarly z = xz1, so we get x2 + (xy1)3 + (xz1)5 = 0,
which can be written as x2(1 + xy3

1 + x3z5
1) = 0. The x2 is just the P 2, not giving rise to new

singular points. The singular points of the bracketed term can be found as before and it turns out
there are none.

For y1 = 1, we put x = x1y, z = z1y, and we get (x1y)2 +y3 +(z1y)5 = 0, and x2
1 +y+z5

1y
3 = 0

has singularities if 2x1 = 0, 1 + z5
13y2 = 0, and 5z4

1y
3 = 0, which again has no solutions.

For z1 = 1, things get more interesting. Here, x = x1z, y = y1z, and we get (x1z)
2+(y1z)

3+z5 =
0, and dividing by z2, we get x2

1 + y3
1z + z3 = 0. This has the singularity x1 = y1 = z = 0. We

might hope that this new singularity of x2
1 + y3

1z + z3 = 0 is better than the one we started with,
and we can try to resolve it by blowing up again. As before we introduce new coordinates for
another P 2, denoted (x2 : y2 : z2). Again we cover P 2 by {x2 = 1}, {y2 = 1}, and {z2 = 1}. For
x2 = 1, z2 = 1, everything is non-singular once again. For y2 = 1, x1 = x2y, z = z2y1, and we
get x2

2y
2
1 + y4

1z2 + y3
1z

3
2 = 0 (up to possible mistakes in indices and powers). Dividing by y2

1 , we
get x2

2 + y2
1z2 + y1z

3
2 = 0, which is again singular at (0, 0, 0). Comparing with the equation from

before, we seem to have seen no improvement here, and we once again have a sum of monomials
with terms of degree 2, 3, and 4. We continue considering this example next time.

17th lecture, October 21st 2010

We continue considering the E8 duVal singularity x2 + y3 + z5 = 0. Last time we blew it up at
(0, 0, 0) getting x2

1 + y3
1z + z3 = 0, which also has a singularity at (0, 0, 0). Blowing it up again,

we get x2
2 + y2

1z2 + y1z
3
2 = 0, which does not seem to improve the singularity. Both are sums of

monomials with degrees 2, 3, 4.
This illustrates two points: Firstly, blow-ups may only improve singularities very slightly. Sec-

ondly, it is di�cult to measure the �badness� of a singularity.
Let us blow it up again, and introduce coordinates (x3 : y3 : z3) on a new P 2. We have 3

open covers on P 2 to consider, given by x3 = 1, y3 = 1, z3 = 1. The case x3 = 1 turns out to be
non-singular (exercise). For y3 = 1, we have x2

2 + y2
1z2 + y1z

3
2 = 0 and put x2 = y1x3, z2 = y1z3,

so we get x2
3y

2
1 + y2

1y1z3 + y1y
3
1z

3
3 = 0, and dividing by y2

1 we get x2
3 + y1z3 + y2

1z
3
3 = 0 with the
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Figure 21: The 8 copies of P 1 and how they intersect.

singular point x3 = y1 = z3 = 0. For z3 = 1, there is only one singular point x3 = y3 = z2 = 0.
Note that neither of the singular points are in both y3 = 1 and z3 = 1.

If we �rst look at x2
3 + y1z3 + y2

1z
2
3 = 0 (it seems we lost a power of z3 here, but oh well ...)

and blow up at (x3 : y3 : z3) = (0 : 1 : 0), we completely resolve the singularities by blowing up. If
we look at x2

3 + y2
3z2 + y3z

2
2 = 0. Introducing (x5 : y5 : z5) we now get no singularities at x5 = 1,

for y5 = 1 we get two singularities, at x5 = 0, y3 = 0, and z5 = 0 or −1. For z5 = 1, we have
singularities at x5 = 0, z2 = 0, y5 = 0, and −1. Note that two of the singularities are the same,
so now we have 3 singularities to deal with. Fortunately, each of these can be resolved by blowing
up.

In summary, we needed 8 blow-ups to resolve the singularities, and we needed 27 variables,
illustrating how messy calculations become.

The above example was particularly simple, as all singular sets had dimension 0.
Singularities of the form xa11 + xa22 + · · · + xann = 0 turns out to be related to exotic spheres.

If we take the intersection of this with a small sphere around the origin, |x1|2 + · · ·+ |xn|2 = ε, a
real sphere of dimension 2n− 1. The intersection has real dimension 2n− 3.

Example 120. If we take x2 + y3 + z5 = 0 with |x|2 + |y|2 + |z|2 = ε. This gives the Poincaré
3-sphere, which has H1 trivial and π1 of order 120.

Example 121. Milnor's examples of 7-spheres: Consider v2 + w2 + x2 + y3 + z5+6k = 0 and
|v|2 + |w|2 + |x|2 + |y|2 + |z|2 = ε. For k = 1, . . . , 28 this gives 28 di�erent smooth manifolds, all
homeomorphic to S7.

The resolution of the variety is closely related to the smooth manifolds you get. We resolve the
surface S given by x2 + y3 + z5 by blowing up 8 times. Each blow-up adds a copy of P 1 to the
inverse image of S. So the inverse image of the singular point is a union of 8 copies of P 1. These
intersect like in Fig. 21, where every line represents a P 1. We can dualize this by replacing each
line by a point and join 2 lines if the P 1 intersect. Doing this we get the Dynkin diagram of E8.
This is related to the Poincaré 3-sphere, which can be constructed by �plumbing� according to the
E8 diagram.

Example 122. Consider the curve x4+y4 = z2 (which was used by Fermat to show that x4+y4 = z4

has no solutions in integers greater than 0. His idea was that any solution to x4 + y4 = z2 gives a
smaller solution of a4 + b4 = 4c2 (writing the �rst one as (x2)2 +(y2)2 = z2 and using a result from
the beginning of the course), and any solution of this gives a smaller solution of x4 + y4 = z2).
The only singularity of x4 + y4 = z2 is at (0, 0, 0). We blow up by introducing coordinates
(x1 : y1 : z1) ∈ P 2. As always, there are 3 cases to look at: z1 = 1 becomes non-singular (exercise).
For y1 = 1 put x = x1y, z = z1y. We get (x1y)4 + y4 = (z1y)2, so x4

1y
2 + y2 = z2

1 , which has
singularities at y = z1 = 0. The key point of this is example is, that the singular set of the blow-up
is now the line y = z1 = 0 of dimension 1. So blowing up a singular point can produce a singular
line.

Example 123. Why do people care about resolving singularities? We give an application: Suppose
we have a polynomial f(x1, . . . , xn) of several variables, and assume (for simplicity) that f ≥ 0.
Look at fs for s complex. The question is: Can we continue this as a distribution for all complex
s? In other words, look at

P (s) =

∫
g(x1, . . . , xn)f(x1, . . . , xn)sdx1 . . . dxn,
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where g is some rapidly decreasing test function. This function is well-de�ned for Re(s) ≥ 0.
One example of this is the function Γ(s) =

∫∞
0
e−tts−1dt. We know that Γ(s) has poles at s =

0,−1,−2, . . . and is holomorphic elsewhere. So in general, we cannot expect P to be holomorphic,
but we can ask to continue it as a meromorphic function of s. The problem is the set where f = 0.

Suppose f(x1, . . . , xn) = x1 · · ·xn. This f corresponds to a normal crossing singularity with
hyperplanes meeting transversly. This case is easy to do, since

∫
g(x1, . . . , xn)xs1 · · ·xndx1 . . . dxn

can more or less be split into 1-dimensional integrals of the form
∫
g(xi)x

s
idx which can be solved

by integration by parts. Doing this we pick up poles, and by repeated use of integration by parts,
the function can be continued with poles at s = −1,−2, . . . .

Atiyah did the following: Suppose f has complicated singularities, and assume that we have
a resolution of the singularities, lifting f to g. By a theorem by Hironaka, we can �nd such a
resolution, and this can be done so that the map V → Rn is proper (meaning that the inverse
image of a compact set under the map is compact), and so that the inverse image of f = 0 has
normal crossing singularities. As the map V → Rn is proper, we can �push forward� gs to fs by
�integrating over �bers�.

In fact, Bernstein found an �elementary� proof that fs can be continued, and in this sense the
theorem by Hironaka is rather overkill.

Example 124. Another example is the Malgrange�Ehrenpreis theorem: Every di�erential equation
with constant coe�cients has a fundamental solution. The (extremely sketchy) proof goes as
following: Suppose P (D1, . . . , Dn) is a di�erential operator Di = ∂

∂xi
. For example the Laplacian

∂2

∂x2
1
0 · · ·+ ∂2

∂x2
n
. Suppose we have a distribution f such that Pf = δ, the Dirac δ function. Taking

the Fourier transform we get P (x1, . . . , xn)f̃ = 1,˜= 1/P (x1, . . . , xn). The problem is that P might
have zeroes. The solution is to look at P (x1, . . . , xn)s (s complex), and we can use resolution of
singlarities.

Example 125. Look at the scheme with coordinate ring Z[
√
−3] of all numbers of the form a+b

√
−3.

So, pretend that this is a coordinate ring of an algebraic variety. For example, points of this
corresponds to maximal ideals. Consider the non-principal prime ideal (2,

√
−3− 1). We want to

show that it is a singular point of the scheme Spec(Z[
√
−3]). Look at the local ring of this point.

We take Z[
√
−3], and invert anything not in the ideal (2,

√
−1 + 1); we think of it as �things not

vanishing at the point�.
So we get a local ring with maximal ideal m generated by (2,−

√
−3 + 1). Look at m/m2, the

Zariski cotangent space. Herem2 is generated by (22, 2(
√
−3+1), (

√
3+1)2) = (4, 2

√
−3+2). Then

R/m is a ring of order 2 (which is the �eld F2). Look at R/m
2. this maps onto Z/4Z[

√
3]/(2

√
3−2)

which has order 8. So R/m2 has order at least 8, and m/m2 has order at least 4. In fact it is
exactly 4. It thus has dimension 2 over R/m = F2, so the Zariski tangent space has dimension
at least 2. But the ring Z[

√
−3] has dimension 1, since all non-zero primes are maximal, so the

dimension of the Zariski tangent space has dimension greater that the dimension of the ring, so
the point is singular. This is related to the fact Z[

√
−3] does not have unique factorization.

Let us try to resolve the singularity. A resolution of a singularity in V would be a mapW → V ,
giving rise to a map O(V ) → O(W ). In our case we want to map Z[

√
−3] to something. This

something turns out to be the integral closure (also called the normalization) of Z[
√
−3] in the

quotient �eld. This is the ring Z[(−3
+ 1)/2]. The points of this are called the Eisenstein integers,

and they form a unique factorization domain. So the SpecZ[
√
−3] ←− SpecZ[(

√
−3 + 1)/2] is a

resolution of singularities.

18th lecture, October 26 2010

4.1 Completions

Today we will cover completions, which is another way to analyze local rings. There are a who
series of ways to study a variety at a point: One is to look at the local ring � that is, you invert all
functions that are nonzero at a point. Suppose that R is some local ring with maximal ideal m. We

44



can think of R/m as the �eld of functions at the point. Similarly, we could look at R/m2, which
sort of describes �2nd order neighborhood�, and we could continues this way. The completion is
putting all of these R/mn together. In other words, we take the inverse limit. Before de�ning the
inverse limit, let us do an actual example.

Example 126. Look at A1 near the point 0. The local ring R is the set of rational functions f/g,
g(0) 6= 0. A maximal ideal is the set of functions f/g, with f(0) = 0, g(0) 6= 0. Now R/m = k,
R/m2 = k[x]/(x2), R/m3 = k[x]/(x3). Notice that we have natural maps · · · → R/m3 → R/m2 →
R/m. The inverse limit is a ring R̂ mapping to all R/m: It is given by all sequences (a1, a2, . . . ),
ai ∈ R/mi, which are compatible, such that the image of ai under the above mentioned maps is
ai−1. So a1 = b0 ∈ R/m = k, and a2 = c0 + c1x ∈ R/m2, and compatibility tells us that c0 = b0,
and so on. Putting these together, we see that an element of the inverse limit is the same as a
formal power series b0 + b1x + b2x

2 + · · · , where b0 is determined by the image in R/m, b0 + b1x
is determined by the image in R/m2 and so on.

The inverse limit has the following universal property: If A is any ring mapping to all the
rings R/mi such that the below diagram commutes, then there is a unique map A→ R̂ such that
everything commutes (this is an easy exercise).

A

{{vvvvvvvvv

�� $$I
III

III
III

R/m R/m2oo R/m3oo · · ·oo

Moreover, this property charaterizes R̂ up to isomorphism (which is another easy exercise).
Notice that we can de�ne inverse limits in any category in a similar way; it may or may not exist.

Now we can ask what the relation between the local ring and its completion is. There is an
obvious map R → R̂. This map is sometimes injective, and sometimes it's not. It is if R is
Noetherian (because of a theorem due to Krull). We consider a few examples of what goes wrong
if R is not Noetherian.

Example 127. Take R to be germs of smooth functions on R near 0 � that is, we take smooth
functions and identify two of these, if they are the same near 0. R is a local ring with a maximal
ideal m represented by smooth functions that are 0 at 0. To see that it is a local ring, suppose
f /∈ m. Then f 6= 0 at 0, so f 6= 0 in some neighborhood, and so f−1 exists in some neighborhood
of 0. We have R/m ∼= R, R/m2 = R[x]/(x2), and in general R/mn ∼= R[x]/(xn). So as before, the
completion is the formal power series ring R[[x]]. But the map from germs of smooth functions to

formal power series is not injective. The standard example is something like e−1/x2

, whose formal
power series is 0, since all derivatives vanish at 0. So R is not Noetherian, and one might wonder
what its not �nitely generated ideals are; one example is the ideal I of functions vanishing to all
orders.

Example 128. We consider the ring of Puiseux series. Consider R[[x]] ⊆ R[[x1/2]] ⊂ R[[x1/6]] ⊂ · · · .
The union of all these is the ring R of Puiseux series; that is, it is the union of power series in
x1/n, n = 1, 2, . . . . We have a maximal ideal m of all series with vanishing constant term. Now
R/m = R, but notice that m2 = m. To see this note that a1x

1/n+a2x
2/n+ · · · ∈ m can be written

x1/n(a1 + a2x
1/n + · · · ), where the last term is a unit. Therefor, the completion is just R.

Theorem 129 (Hensel's lemma). We have Hensel's lemma: Suppose R is a local ring and R̂ its
completion. Suppose f ∈ R̂[x]. Suppose f0 = g0h0, with f0 the imaeg of f in k = R/m. Suppose
g0, h0 are coprime in k[x]. Then f = gh for some lifts of g, h.

The geometric meaning of this is the following:

Example 130. Consider for example y2 = x3 + x2 with a singularity at the origin as in the �rst
image in Fig. 22. Then the singularity sort of looks like the singularity shown in the second image
in Fig. 22: Take R to be the local ring of k[x, y] at 0. Look at z2 = x+ 1. This has roots z = ±1
in R/m = k, since z2 − (x+ 1) = (z − 1)(z + 1)( mod m). If char k 6= 2, then z − 1 and z + 1 are
coprime, and by Hensel's lemma, (z2− (x+1)) = g(z)h(z) for g, h ∈ R̂[x]. This says that 1+x has
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Figure 22: The picture considered in Example 130.

a square root in R̂, so y2 − x2(1 + x) factorizes as (y− x+ higher powers)(y− x− higher powers).
This gives the split in the illustration meaning that the cusp looks like 2 lines intersecting over the
completion. (Note that this fails for char k = 2 since here (y − x)20y2 − x2( mod 2)).

Hensel's lemma also occurs in algebraic number theory: Here the local ring might be Z(p), all
rational numbers f/g with p 6| g. This is analogous to rational functions f/g, g(0) 6= 0 with x 6| g.
The completion of the ring is given as follows: The maximal ideal m is all rationals f/g with p | f ,
p 6| g. We �nd that R/mn = Z/pnZ. The completion is the inverse limit of Z/p ← Z/p2 ← · · · .
The result is the p-adic numbers � a typical p-adic number looks like a number to pase p going
o� to the left (unlike the way we usually right real numbers). The number · · · a2a1a0 means
a0 + a1p + a2p

2 + · · · , which is analogous to the formal power series a0 + a1x + a2x
2 + · · · .

For formal power series, however, the completion R̂ has the same characteristic as the quotient
ring R/m. For p-adic numbers, the quotient �eld has characteristic p, but the completion has
characteristic 0. This seems to be a fundamental di�erence between algebraic number theory and
algebraic geometry.

Proof of Hensel's lemma. We prove the theorem since the proof is typical for proofs about comple-
tions. The key point of proving things about completions is to prove �rst for R/m, then for R/m2,
R/m3, and so on, putting everything together. Suppose f ∈ R̂[x] Suppose f0 = g0h0 ∈ R̂. To sim-
plify notation, just take R̂ = R[[y]]. Then we want to �nd h1, g1 ∈ R/m2[y]. Write h1 = h0 + a1x,
and g1 = g0 + b1x, where a1, b1 have to be found. Now

f = h1g1( mod x2)

= h0g0 + x(h0b1 + g0a1) + (· · · )x2.

We need to choose the term in the �rst paranthesis to be the coe�cient of x in f . Note that h0, g0 are
coprime by assumption, so they generate a unit ideal in k[y], and we can solve (coe�. of x in f) =
h0b1 + g0a1 for b1, a1. Next we want f = (h0 + h1x + h2x

2)(g0 + g1x + g2x
2)( mod x3), and

given h0, h1, g0, g1, f we want to solve for g2, h2. Again we �nd that the coe�cient of x2 in f is
h2g0 + h1g1 + h0g2, and we can solve for h2, g2, as g0, h0 gneerate the unit ideal. We can just keep
going like this to produce f = gh, where g, h are polynomials in y with coe�cients that are formal
power series in x.

Elimination theory is about the following problem: Suppose V is a variety in (say) A3. What
is the image of V under projection to (say) A2 � see Fig. 23. Suppose V is given by f(x, y, z) = 0,
g(x, y, z) = 0. We want to elimiate z from these equations. The problems occur when the equations
are not linear in the variable we are trying to eliminate.

Example 131. Suppose V is given by x3y4 − 7xy2 + 6x3y + 7x− 1 and x5y − 6xy3 + 7 in A2, and
we want to eliminate y. What equation must x satisfy? We expect that the equation must be of
degree about 42, since the equations are of degree 7 of 6. We will give an algorithm for eliminating
y.

A more general problem is the following: Suppose f = amx
m + · · · + a0, g = bnx

n + · · · + b0
are polynomials in x (with coe�cients in some ring, maybe polynomials in y, z, . . . ). What is
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Figure 23: A variety V arises as the intersection of A and B, and we are interested in its projection.

the condition on a0, · · · , am, b0, · · · , bm for the polynomials to have a common root � this is a
generalization of the previous problem, and this is what we want to solve.

Suppose f, g have a common root, so f(x) = (x − α)q(x) and g(x) = (x − α)p(x). Then
f(x)p(x) = g(x)q(x), and deg p < deg g and deg q < deg f . This is a set of deg f + deg g linear
equations for the coe�cients of p, q; p has deg g unknown coe�cients and q has deg f , so it has a
nontrivial solution, if and only if the determinant of the matrix of the coe�cients of these linear
equations vanishes. The matrix of linear equations is



am am−1 · · · a0 0 · · · 0
am am−1 · · · a0 · · · 0

. . .

am · · · a0

bn bn−1 · · · b0 0 · · · 0
bm bn−1 · · · b0 · · · 0

. . .

bn · · · b0


This is called the Sylvester matrix, and the determinant is called the resultant of f and g. The

above condition is almost but not quite the condition for f, g to have a commen root. The problem
is that the leading coe�cients am, bn might be 0. The determinant also vanishes if am = bn = 0.
If am = 0, we say that f has a �root at ∞�, and similarly for bm = 0 and g. Then the determinant
vanishes if and only if f, g have a common root, possibly at ∞.

Example 132. What is the condition for f to have a multiple root (or leading coe�cient 0)? We
can do the case where g = f ′, and f(x) = x3 + bx+ c to try to �nd the double roots of f . Plugging
everything into the Sylvester matrix, we get

det


1 0 b c 0
0 1 0 b c
3 0 b 0 0
0 3 0 b 0
0 0 3 0 b

 = 4b3 + 27c2,

which is the discriminant of a cubic.

If we rewrite the above over projective space, the result becomes a bit clearer. Suppose f, g are
homogeneous polynomials amx

m+am−1x
m−1y+ · · ·+a0y

m and bnx
n+ · · ·+ b0y

n with coe�cients
ai, bi in k[z1, . . . , zt]. Then f, g de�ne hypersurfaces Hf , Hg in At × P 1, where At has variables
z1, . . . , zt, and x, y are coordinates for P 1.

The resultant of f, g then gives the condition for f, g to have a common zero in P 1 at any given
point of At. Then the resultant gives the image of Hf ∩Hg in A

t. The key point is that the image
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of a closed set Hf ∩Hg in A
t is closed. This is unusual, and in general there is no reason that the

projection of a closed set is closed; this for example doesn't happen for xy = 1 in A1 × A1. Next
time we will see that At × Pn → At is a proper map: It takes closed sets to closed sets.

19th lecture, October 28 2010

Recall that last time we were looking at

f(x, y) = anx
n + an−1x

n−1y · · · a0y
n

g(x, y) = bmx
m + · · · b0ym.

The condition for these two to have a common root in P 1 with coordinates x, y is a polynomial in
a's and b′s called the resultant, which by de�nition is the determinant of the Sylvester matrix.

If Hf , Hg are hypersurfaces in At × P 1 then the projection of the closed set Hf ∩ Hg under
⊆ At × P 1 → At is closed (the zero set of the resultant). The a's and b's are polynomials in
z1, . . . , zt are coordinates in A

t. We want to generalize this and show that under At × Pn → At

the image of any closed set in At × Pn in At is closed. (This is false for a�ne space, as we saw
last time. It is not even true that the image of a polynomial map from Rn to R is closed � there
is a counterexample: x2 + (xy − 1)2 : R2 → R.)

The motivation for all this is to �nd an analogue of the fact that Pn(C) with the usual topology
is compact � a quick proof of this is that the image of S2n−1 is all of Pn−1(C) under the quotient,
and S2n−1 is compact. We see that Pn(k) is compact in the Zariski topology � this is the wrong
analogue though, as An(k) is also compact in the Zariski topology. We need to �nd a di�erent
description of compactness. Recall the notion of a proper map of locally compact Hausdor� spaces.

De�nition 133. A map X → Y is called proper if it is universally closed. That is, X×Z → Y ×Z
is closed for all Z (i.e. the image of every closed set is closed).

Note that X is compact, if and only if X → 1 is proper (as a special case: If X is compact, then
X → Y is always closed: If C ⊆ X is closed, then C is compact, so the impage of C is compact
and therefore closed).

For locally compact Hausdor� spaces, saying that X → Y is proper is equivalent to saying that
it is closed with all �bers being compact.

De�nition 134. We say that a morphism X → Y of algebraic sets is proper if it is universally
closed: X × Z → Y × Z is closed for the Zariski topology on X × Z, Y × Z, which is not the
product topology.

If X → 1 is proper, this is an analogue of saying that X is compact in the complex topology.
The key property of projective varieties V says that V → 1 is proper. It is su�cient to show

that the map Pn → 1 is proper (as V is closed in Pn). We need to show that Pn × Z → Z is
closed for all Z. It is easy to reduce to the case Z = Am, so we want to show that Pn ×At → At

is closed. We already did the an easy case of this.
Let us �rst show that P 1 × At → At is closed. Suppose S is a closed set in P 1 × At

given by the zeros of polynomials f1, f2, . . . , in variables X,Y, Z1, . . . , Zt, where X,Y are ho-
mogeneous coordinates on P 1, and the Zi are coordinates on At. We look at the resultant of
F = t1f1(X,Y, Z1, . . . , Zt)+t2f2+t3f3+. . . , and G = s1f1+s2f2+· · · . We think of the coe�cients
as homogeneous polynomials inX,Y whose coe�cients are polynomials in s1, . . . , t1, . . . , Z1, . . . , Zt.
Then the projection of S into A1 is given by the vanishing of all coe�cients sαtβ in the resultant of
F,G (exercise). So, the image is closed as each coe�cient of sαtβ in the resultant is a polynomials
in Z1, . . . , Zt. This shows that P

1 ×At → At is closed.
Let us try to do the general case Pn ×At → At by induction on n. An obvious way to do this

would be to write Pn = Pn−1 × P 1, isn't true � if it was true, it would be easy, since we could
write Pn × At = P 1 × (Pn−1 × At) → Pn−1 × At → At and use induction to see that the map
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is closed. While Pn is not Pn−1 × P 1, it is quite close to be. The correct statement is that the
blow-up Z of Pn at a point is a bundle over Pn−1 with �ber P 1

Z

~~}}
}}

}}
}}

""E
EEEEEEE

Pn Pn−1

Z is a sort of �twisted� product or �ber bundle over Pn−1. We have a birational map Pn →
P 1×Pn−1; birational map can be turned into morphisms by blowing things up. (This is a common
application of blowing up).

More precisely, we have a rational map Pn → Pn−1 mapping (x0 : · · · : xn) 7→ (x1 : · · · : xn)
de�ned except at the point (1 : 0 : · · · : 0). We look at the graph of this map, the subset of
Pn × Pn−1 consisting of the points (x0 : · · · : xn)× (y1 : · · · : yn) with xiyj = xjyi for all i, j and
some xi (i > 0) nonzero. Let Z be tehe closure of this graph; we add a copy of Pn−1 lying over
(1 : 0 : · · · : 0). That is, all points of the form (1 : 0 : · · · : 0)× (y1 : · · · : yn). This corresponds to
dropping the second condition above. We now have the following maps:

Z

~~}}
}}

}}
}}

""E
EEEEEEE

Pn Pn−1

The map on the left is an isomorphism abvoe all points other than (1 : 0 : · · · : 0), and the
inverse image of (1 : 0 : · · · : 0) is a copy of Pn−1, so Z is just a blow-up of Pn at this point.
What is the �ber of a point Pn−1 under the second map? By symmetry, we may as well look at
(1 : 0 : · · · : 0), which has �ber the points (x : y : 0 : · · · : 0) ∈ Pn, which is a copy of P 1 as we
claimed before. Note again that this does not imply that Z = Pn−1 × P 1. However, locally it is a
product. Recall that Pn−1 is covered by n copies of a�ne space An−1. Over each copy of An−1,
Z does look like a product P 1 × An−1. For example, over the open subset y1 = 1 in Pn−1, the
equations for Z are xi = x1yi for i 6= 1, so if we map (x0 : · · · : xn) to (x0 : x1) × (x2, . . . , xn) we
get a map from an open subset of Z to P 1 × An−1. This gives an isomorphism from the inverse
image of An−1 in Z to P 1 ×An−1. Now we can �nish o� the proof, since Z → Pn−1 looks locally
like a product P 1× something→ something, so it is a proper map (since if it is locally proper, it is
proper). The map Pn → 1 is proper, since we can lift it to Z → Pn−1 → 1, which is a composition
of two proper maps.

For n = 2, the setup is the following:

Z

~~}}
}}

}}
}}

  
AA

AA
AA

AA

P 2 P 1

Z is then a surface mapping to P 1 with �ber P 1, it is birational to P 2 (and P 1 × P 1), but it
is not isomorphic to either surface. This is an example of a Hirzebruch surface, having P 1 �bers
over P 1.

We turn now to a second proof, which is shorter. The �rst proof has the advantage of being
constructive: It actually gives a (complicated) algorithm for �nding the equations of the projection
of a closed subset S ⊆ Pn ×At in At. Here's the second one: Suppose f1, f2, . . . are homogeneous
polynomials in Z1, Z2, . . . . We want to show that the condition they have a common zero is
given by a closed condition on their coe�cients; in other words, it is given by the condition that
some polynomials in the coe�cients vanish � this is just a reformulation that Pn → At → At is
closed. By the (projective) Nullstellensatz, they have no common zero if and only if the ideal they
generated contains (Z1, . . . , Zt)

d for some d ≥ 0. For each d the condition that linear combinations
of the f 's contain all degree d monomials in Z1, . . . , Zt just says that a certain linear map to the
space of monomials is onto. The conditions that a linear map km → kn is onto is open (it is the
complement of a determinantal variety). So, the points where the f have no common zero is the
union over d of various open sets, thus open, and the points where all f have a common zero is
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Figure 24: Two of the ovals in the example.

closed. (This proof is ine�ective, as we took an in�nite union over d � by compactness we can do
with a �nite number of sets, but it is hard to know which ones.)

We consider now a historical application of singular points.

Theorem 135 (Newton). Smooth ovals cannot be algebraically integrated.

The historical background is the following: We would like to �nd the location of a planet moving
along an ellipse (or rather any orbit) at a given time. Due to one of Kepler's laws, the area swept
out by the line from the planet to the sun increases at a constant rate. The �rst thing Newton
showed was that this condition is equivalent to the planet moving under some centripetal force
directed to the sum. So we want to consider the following problem: Given some oval, is the area
in the �rst image of Fig. 24 an algebraic function of the lines bounding it? Equivalently, is the
area A shown in the second image of Fig. 24 an algebraic function of the secant ax + by = c? Is
there a non-zero polynomial p such that p(A, a, b, c) = 0? If this is possible, you can write up an
algebraic equation for the planet moving along an orbit with the centripetal force desribed above.

The answer is sometimes yes. For example, if the oval is a triangle. Calculus gives a lot
of examples; parabolas, cubics, etc. where the area can be calculated by integration, giving an
algebraic function of the secant.

Consider instead for example y2 = x2 − x4. In this case, it is always possible since
∫
y dx =∫ √

x2 − x4 dx =
∫
x
√

1− x2 dx, which can be calculated and gives an algebraic expression. New-
ton showed that for any oval, the area cut o� by a secant is not algebraic function of the secant.
The proof is pretty graphical, and I got a bit lazy at this point (see Borcherds' notes) � the key
point is to construct a certain spiral from the ovals that is not algebraic. The above examples seem
to be counter-examples to Newton's theorem. In each of the examples, the spirals considered in
Newton's proof will contain singular points; that is, they will not be in�nitely di�erentiable. The
additional assumption pointed out by Arnold (300 years later) therefore is that the oval must be
in�nitely di�erentiable.

20th lecture, November 2 2010

5 Non-singular curves

A basic invariant of a curve is its genus. A topological de�nition of this over C is the following;
the complex points form a surface. If the curve is projective, the surface is compact. The surface
is always oriented and its orientation is given by a complex structure on the tangent spaces � each
tangent space is a complex vector space, which can be given an orientation by the pair of vectors
(v, iv). Recall now the classi�cation of compact (closed) oriented connected surfaces; these are
classi�ed by their genus. A better invariant is really the Euler characteristic 2− 2g.

We will mostly give examples of nonsingular, projective, complex curves.

Example 136. For genus 0, the only example is the projective line P 1(C) = C∪∞, which is just a
sphere.

Example 137. For genus 1, we have the elliptic curves. Recall that we have an analytic construc-
tion: We can de�ne them as C modulo a lattice, making it obvious that these are tori, but this
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construction is not algebraic, and gives problems for arbitrary �elds. An algebraic construction is
given by y2 = 4x3 + bx+ c. The connection between these is the Weierstrass ℘-function, which is
periodic under lattice translations, ℘(z + λ) = ℘(z) for λ in the lattice, and on the other hand,
it satis�es a di�erential equation, ℘′(z)2 = 4℘(z)3 − g2℘(z) − g3, so z 7→ (℘′(z), ℘(z)) mapping
C/Λ − pt → y2 = 4x3 − g2x − g3. This really gives the elliptic curve as a double cover of P 1

branched in 4 points.
The 4 points are the roots of 4x3 − g2x− g3, which is really a degree 4 polynomial with a root

at ∞. This means that we could consider the map y2 = 4x3 − g2x − g3 7→ x ∈ P 1, which is a
2 : 1 map in general; there are two values of y for each x, except if x is a root of 4x3 − g2x− g3 or
x =∞.

This gives rise to an algebraic construction given by cutting the double cover along certain
curves and gluing them together � see Fig. 25.

Figure 25: A genus 1 curve can be pictured as a result of cutting and gluing.

We can calculate the genus (or rather the Euler characteristic χ) of this double cover of S2

branched at 4 points. Recall that χ is the number of points − the number of lines + the number
of 2-cells. In our case, the Euler characteristic is given by the Euler characteristic of the union of
2 spheres with 4 points removed, and 2 + 2− 4 = 0, which is the Euler characteristic of a torus.

Next we can ask how to classify all the elliptic curves. In the curve y2 = (x− x1)(x− x2)(x−
x3)(x−x4) we can substitute x 7→ ax+b

cx+d without a�ecting the isomorphism class. This gives a group
of transformations, which is nothing but PSL2(C). This can take any three points to any other
three points. So take x1, x2, x3 to 0, 1,∞, so the curve becomes y2 = x(x− 1)(x− λ) for some λ.
The problem is the following: When is y2 = x(x− 1)(x−λ1) isomorphic to y2 = x(x− 1)(x−λ2)?
This happens when there is an automorphism of P 1 taking {0, 1,∞, λ1} to {0, 1,∞, λ1}. This is
possible if λ2 is λ1, 1−λ1, 1/λ1, 1− 1/λ1, λ1/(1−λ1), or 1/(1−λ1). These form a group of order
6, generated by λ 7→ 1 − λ and λ 7→ 1/λ. This group can also be thought of as the permutations
of {0, 1,∞}. The moduli space (i.e. the space of isomorphism classes of elliptic curves) turns out
to be A1 modulo this group of order 6. So we want to �nd a rational function invariant under

λ 7→ 1 − λ, λ 7→ 1/λ. Such a function is j = 256 λ2−λ+1
λ2(λ−1)2 . This is the so-called j-invariant of

elliptic curves. One can show that 2 elliptic curves over C are isomorphic, if and only if they have
the same j-invariant in C. (A problem is that the moduli space of elliptic curves is really a stack
and not a space; elliptic curves have non-trivial automorphisms, and whenever you try to classify
things with non-trivial automorphisms, you run into the following problem: We know that elliptic
curves correspond to maps from a point to the moduli space; we would like to have that �nice�
(��at�) families of elliptic curves over a space X correspond to maps from X to the moduli space.
Suppose an elliptic curve E has an automorphism σ; say x 7→ −x. In the topological picture, take
E × I (which is not a variety). Join E × 0 to E × 1 using the automorphism σ. Doing this we
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have a non-trivial family of elliptic curves over I/(0 = 1) = S1, but they are all isomorphic, so the
corresponding map to the moduli space has image a point, but this map corresponds to the trivial
family. The theory of stacks is a way of getting around this problem.)

We could also ask the following question: Suppose we have a lattice Λ = 〈ω1, ω2〉; what is
the j-invariant of C/Λ? The answer is if τ = ω2/ω1, j is a function of q = e2πiτ , |q| < 1, and
j(τ) = q−1 + 755 + 196884q + 21493760q2 + · · · , the elliptic modular function.

Example 138. For genus 2, all curves are hyperelliptic, meaning that they are all branched double
covers over P 1, meaning that they are y2 = x2n + a2n−1x

2n−1 + · · ·+ a0, branched at 2n roots of
this polynomial. In degree 2, y2 = x2 + a1x + b, this is P 1 as a double cover of P 1. In degree 4,
y2 = x4 + a3x

3 + · · · + a0, these are exactly the elliptic curves. In degree 6, y2 = x6 + · · · + a0,
these are genus 2 curves; in general, we can check the Euler characteristic like in the genus 1
picture. Here, χ can be calculated to be 2 + 2− 2n = 4− 2n, and since χ = 2− 2g, so g = n− 1.
In particular, in the degree 6 case, we do indeed have genus 2 curves, and we also get every
genus ≥ 0. In fact, all genus 2 curves are hyperelliptic (by the Riemann�Roch theorem), and
the classi�cation is given by sets of 6 numbers x1, . . . , x6 in P 1 up to the action of the group
PSL2(C). This is equivalent to the problem of �nding the invariants of the binary sextic form
a6x

6 + a5x
5y + · · · + a0y

6 = a6(x − x1y) · · · (x − x6y); this is a hard problem in invariant theory.
The �nal answer looks like this: The moduli space is A3 modulo the cyclic group of order 5 acting
as (x, y, z) 7→ (ζx, ζ2y, ζ3z), where ζ5 = 1. There seems to be no such explicit description of the
moduli space of curves of genus > 2. The dimension of the moduli space in our case is 3; we can
choose 6 points of P 1 and quotient by the action of PSL2(C), which has dimension 3.

Example 139. For genus 3, some curves are hyperelliptic, y2 = x8 + · · · + a0, and we get a 5-
dimensional family of such, as here we can choose 8 points in P 1 and quotient by the action of
the group PSL2(C) of dimension 3. We can also get examples as nonsingular degree 4 curves
in the plane. Suppose we have a nonsingular curve of degree d in P 2. We can then ask for its
genus or Euler characteristic. Taking f(x, y) = 0, where f has degree d, we consider the curves
as a degree d cover of P 1, mapping f(x, y) = 0 to x ∈ P 1. In general this is a d : 1 map.
Sometimes it has branch points; most of the time, all branch points will be order 2, and we can
ask how many branch points there are. The answer is d(d − 1), so the Euler characteristic is
d ·χ(S2)− d(d− 1) = 2d− d(d− 1) = 2− 2g, so g = (d− 1)(d− 2)/2. Not every genus can appear,
so most curves cannot be represented as non-singular plane curves. The family of such curves of
genus 3 has dimension 6: The space of polynomials of degree 4 has dimension 15. We subtract
1 as multiplying a polynomial by a constant does not change the curve; curves correspond to the
projective space of k15, which has dimension 14. We then subtract 8, which is the dimension of
the group PSL3(C) consisting of the automorphisms of P 2, so we get a 15− 1− 8 = 6 dimensional
family of genus 3 curves. Note that there are more plane curves than hyperelliptic, as 6 > 5.

A typical example of the geometry of genus 3 curves is the following: A plane genus 3 curve
has 28 bitangents. For example the Trott curve6: 144(x4 + y4)− 225(x2 + y2) + 350x2y2 + 81 = 0
� it has 1 bitangent for each �bean�, touching once of them. Similarly, we have 4 bitangents for

each pair of beans, and in total we get 4 +

(
4
2

)
· 4 = 28. Note also that we have 56 special points,

where the 28 bitangents meet the curve.

Example 140. For genus 4, we can get curves as intersections of a cubic or quadric in P 3. For
genus 5, we could consider 3 quadrics in P 4, and so on. For su�ciently high genus (≥ 22), this
becomes harder due to technical reasons.

We will (topologically) give a picture of every possible algebraic curve: Consider P 1 with n+ 1
points x, x1, . . . , xn in it; choose cuts joining xi to x (which is a topological rather than algebraic
process) � see Fig. 26. Choose a set of d numbers 1, 2, . . . , d. Choose n involutions (an order 2
permutation) on {1, . . . , d}. For example, if d = 6, an involution might exchange (1, 2) and (4, 5).
Take d copies of P 1, cut along these n lines, and join then up along the branch cuts according to
n involutions; 1 for each branch cut. This procedure will not always give an algebraic surface, as

6See http://en.wikipedia.org/wiki/Trott_curve for an illustration of the curve and its bitangents
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Figure 26: The topological construction of general algebraic curves.

the result might be disconnected, but all algebraic surfaces can be produced like this for suitable
x1, . . . , xn, n involutions on d points. An open problem is to make algebraic sense out of the choice
of cuts from x to xi.

21st lecture, November 4 2010

Today, we will consider more examples of complex projective curves. Last time, we saw that plane
curves come in various families. We will consider the most symmetric ones.

Example 141. Recall that elliptic curves are the curves of genus 1. As we saw, they arise like C/Λ
and are groups, so as curves they an in�nite number of automorphisms z 7→ z + z1 and z 7→ −z.
There are two elliptic curves that are even more symmetric than that. We look at the lattice Λ
and ask when it is especially symmetric. One example is the square lattice Z + iZ which has the
extra automorphism z 7→ iz. Another example is the traingle lattice, with the extra automorphism
z 7→ ωz, where ω2 + ω + 1 = 0. In the �rst case, we can write down the curve explicitly as
y2 = x3 + x, where we see the extra automorphism explicitly as x 7→ −x, y 7→ iy. In the triangle
case, the curve is y2 = x3 + 1 with the automorphism x 7→ ωx. These two automorphisms are
special cases of complex multiplication: Some other elliptic curves have extra endomorphisms given
in a similar way.

Example 142. We can try to �nd the most symmetric curves of genus greater than 1; these are called
Hurwitz curves. The key idea of studying these is the following: Suppose we have a �nite group G
acting on a curve C (which we consider as a Riemann surface). We look at the quotient C/G. Think
of this as an orbifold, which is something that looks like a manifold quotient a �nite group and is a
cheap approximation to a stack. Suppose we have a manifold, which locally looks like a circle and
consider the quotient z 7→ −z. This gives rise to an orbifold singularity, which can be thought of as
half a point, and it only counts as a half when computing the Euler characteristic. The advantage
of this is that the orbifold Euler characteristic satis�es χ(C/G) = χ(C)/|G|, where we carefully
count things with fractional values. We can get conical singularities of orders n = 1, 2, 3, . . . , by
considering z 7→ ζz, ζ = e2πi/n, which is a rotation by 1/n revolutions. Now C/G will be a
compact orientable Riemann surface with a few orbifold singularities. These come whenever some
group element of G �xes a point of C. The subgroup �xing any point of C is cyclic and usually
of order 1. If the Riemann surface in question has genus h, the orbifold Euler characteristic is
2 − 2h − (1 − 1

p1
) − (1 − 1

p2
) − · · · , where p1, p2, . . . are orders of the conical singularities; these

summands arise since we remove a point (χ = 1) and add in a singularity (χ = 1/p). So we �nd
that χ(C)/|G| = χ(C/G). That is, 2−2g

|G| = 2− 2h− (1− 1
p1

)−· · · . The key point is that for g > 1,

the left hand side is less than 0. We want the right hand side to be small in absolute value, but we
see that χ(C/G) ≤ −2 if 2−2h = −2,−4, . . . . If 2−2h = 0, then χ(C/G) = 0 or χ(C/G) ≤ −1/2,
so we should take h = 0 and need 2 − 2h − (1 − 1

p1
) − (1 − 1

p2
) − · · · to be negative but close to

0. If we have 4 numbers (1 − 1
p ), we get either 0 or something less than −1/6. If we have less

than 3 numbers, the result is always positive. So we have exactly 3 numbers and want to solve the
problem of making 2−a− b− c < 0 as close to 0 as possible, where a, b, c are of the form 1− 1

p . An

exercise is, that the best solution is 2− 1
2−

2
3−

6
7 = − 1

42 . So
2g−2
|G| ≤ −1/42, so |G| ≤ 84(g−1). This

is Hurwitz' bound for the order of the automorphism group of a Riemann surface of genus g. (It
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should be mentioned that orbifolds can also be used to classify the 17 wallpaper groups in a similar
way. This is an exercise; one does it by considering the quotient of R2 with the wallpaper groups
as an orbifold (which might possibly non-orientable) � the key point is that this is an orbifold with
χ = 0, and one has to solve an equation like above.)

We consider now the following problem: Can we �nd an algebraic curve of genus g > 1 with
84(g − 1) automorphisms? We consider the case g = 2, so we want to �nd a genus 2 curve, with
automorphism group G of order 84. The group G is a quotient of the orbifold fundamental group
of the orbifold, which if the orbifold points have order p, q, r is generated by elements a, b, c of
orders p, q, r with abc = 1. So the automorphism group G has the following properties:

(1) |G| = 84.

(2) G is generated by elements a, b, c with a2 = b3 = c7 = abc = 1. Finite groups with this
property are called Hurwitz groups.

We apply the Sylow theorems to the group. We know that there are 1 mod 7 Sylow 7-subgroups
and divides 84/7 = 12. So there is only 1 Sylow 7-subgroup, say S7, so it is normal. Now look at
H = G/S7 which has order 12. Now, the number of Sylow 3-subgroups might be 1 or 4. If there
is only 1, S3, then it is normal and 1 ⊆ S7 ⊆ S7 · S3 ⊆ G, where the last inclusion has index 4.
Every element of order 3 or 7 is contained in S7 · S3, so G cannot be generated by elements of
order 3,7, so it is not a Hurwitz group. Suppose there are 4 Sylow 3-subgroups (e.g. A4). Any 2
Sylow 3-subgroups are cyclic, so they intersect only in 1. So the group has (3− 1) · 4 = 8 elements
of order 3. This leaves only 4 elements left, so these must form a Sylow 2-subgroup, so the Sylow
2-subgroups must be normal. So, G looks like this: 1 ⊆ S7 ⊆ S7 · S2 ⊆ G. We now run into the
same problem as before: Every element of order 2 or 7 is contained in this subgroup S7 · S2 of
order 28, so G cannot be generated by elements of order 2 and 7, so G is not a Hurwitz group. In
other words, there is no algebraic curve of genus 2 with 84 automorphisms.

We now move on to genus 3 and show that there is an algebraic curve with 84(g − 1) = 168
automorphisms. This is the Klein quartic x3y+y3z+z3x = 0. We �rst check that it is non-singular.
Di�erentiating with respect to x, y, z, one gets 3x2y + z3 = 0, 3y2z + x3 = 0, 3z2x + y3 = 0, and
these have no common solution. It is a non-singular plane curve of degree d = 4, so its genus is
(d− 1)(d− 2)/2 = 3 · 2/2 = 3. It has obvious automorphisms of order 3 mapping x 7→ y 7→ z 7→ x.
There is an automorphism of order 7: Try mapping x 7→ ax, y 7→ by, z 7→ cz for some a, b, c.
We want a3b = b3c = c3a, and one solution is a = ζ4, b = ζ2, c = ζ, ζ7 = 1. Automorphisms of
this type generate a group of order 21. It is hard to �nd any other automorphisms; instead we
cheat slightly, and start with the group G and try to �nd a curve it acts on, rather than �nding
the automorphism group of the Klein quartic. One group of order 168 is PSL2(F7). Note that
GL2(F7) has order (72 − 1)(72 − 7) and SL2(F7) has order (72 − 1)(72 − 7)/6 = 6 · 7 · 8, which
shows that PSL2(F7) has order 6 · 7 · 8/2 = 168. Another group of PSL3(F2) has order 168,
and the two groups happen to be isomorphic, and they are both simple. We want to show that
PSL2(F7) is a Hurwitz group (of smallest possible order). So, we want to �nd elements a, b, c with
a2 = b3 = c7 = abc = 1. The standard generators of SL2(Z),

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
∈ SL2(Z)

satisfy S2 = −1, (ST )3 = ±1, so S2 = 1, (ST )3 = 1 in PSL2(Z). Now T 7 = 1 in PSL2(F7),
and PSL2(F7) is a Hurwitz group. Any Hurwitz group is in fact a group of automorphisms of
a complex Riemann surface. The idea of the topological proof is to tile the hyperbolic plane by
triangles with angles 2π/(2 · 2), 2π/(2 · 3), 2π/(2 · 7).

The group of automorphisms of this tiling (with triangles colored alternatively black and white)
is a group with generators and relations a2 = b3 = c7 = abc = 1. Any Hurwitz group is the quotient
of this by a subgroup X, and the quotient of the hyperbolic plane with this subgroup X is going
to be a Riemann surface.

Suppose we know that PSL2(F7) is the automorphism group of a genus 3 algebraic curve.
It must then be a nonsingular quartic in P 2. Now PSL2(F7) has a complex representation of
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dimension 3 acting on A3, so it acts on C[x, y, z]. We want to �nd an invariant quartic; that is,
we want to �nd a polynomial in 3 variables of degree 4, which is invariant under the action of
PSL2(F7). PSL2(F7) has a subgroup of order 21 acting on C3 as follows: it has an element of
order 3 acting as (x, y, z) 7→ (z, x, y), and an element of order 7 acting as (x, y, z) 7→ (ζ4x, ζ2y, ζz)
(with ζ7 = 1). Any polynomial invariant under PSL2(F7) is also invariant under this subgroup of
order 21, so there are not many invariant elements of degree 4: The only monomials of degree 4
invariant under the element of order 7 are x3y, y3z, z3x. If in addition we require invariance under
the order 3 element, the only possibility is a constant times (x3y + y3z + z3x), which is the Klein
quantic. So in other words, what we have shown is that if any Hurwitz group acts on a curve, then
PSL2(F7) acts on x3y + y3z + z3x = 0.

22nd lecture, November 9 2010

6 Resolving singularities

6.1 Overview of curves/function �elds/Riemann surfaces

Take k algebraically closed. The following are essentially equivalent:

(1) Non-singular projective curves up to isomorphism.

(2) All curves up to birational isomorphism.

(3) Finitely generated function �elds over k of transcendence degree 1.

(4) (Over C) compact (connected) Riemann surfaces.

The map (1) → (2) is trivial. (2) → (3) is easy: Just take the �eld of rational functions. Non-
singular curves over C to Riemann surfaces is also easy, since it is easy to put a complex structure
on the curve. Some of the correspondences are much harder. (4) → (3) looks easy at �rst: Take
the �eld of meromorphic functions on the surface. However, it is hard to show that there are any
non-constant meromorphic functions. Let us consider a few examples of why this is hard.

Example 143. A Riemann surface might be C/Λ with Λ a lattice. To construct a non-constant
meromorphic function on the Riemann surface, we need to construct an elliptic function such as
℘(z) � this wasn't di�cult, but it wasn't completely trivial. It is not clear how to do it for general
surfaces.

Example 144. We consider the Hopf surface. The group Z acts on C2 \ (0, 0). 1 acts as (a, b) 7→
(2a, 2b) and n as (a, b) 7→ (2na, 2nb). Consider C2 \ (0, 0) = S3 × R>0, where Z acts only in the
second factor, and here n ∈ Z acts as x 7→ 2nx. Under this action, we have C2 \ (0, 0) ∼= S3 × S1,
which is a compact complex surface with no non-constant meromorphic functions (so it is not
projective).

More generally, one could consider Cn \ (0, . . . , 0)/Z ∼= S2n−1×S1 which again has no noncon-
stant meromorphic functions for n > 1. For n = 1 we get S1 × S1, an elliptic curve. (Exercise:
Find non-constant meromorphic function f on C \ {0} with f(2z) = f(z).)

The correspondence (3) → (2) is not hard: For a function �eld K, take a separating transcen-
dence base z ∈ K. (It has only 1 element, as the transcendence degree is 1.) So K is a �nite
separable extension of k(z), so it is a simple extension of the form k(z, t) for some t, and z, t satisfy
some polynomial relation p(z, t) = 0 giving a curve.

We will mainly be concerned with (2) → (1). Obviously sending a curve to a projective curve
is trivial, as we can just take its closure in projective space, so the problem is: Given a projective
curve C, �nd a projective curve D birational to it with no singularities; this is the famous problem
of resolving singularities in a curve, and there are various essentially di�erent ways of doing it.
The original method due to Newton was using Newton polygons and Puiseux expansions. Before
considering that one, we �rst look at some of the other popular methods.
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(1) The method in [Har, section 6] is to reconstruct the non-singular curve from the function
�eld as the set of valuations (or places) of the function �eld. This method is essentially due
to Riemann in the case of Riemann surfaces.

(2) Another method is to repeatedly blow up singular points.

(3) We can normalize: Every variety has a �normalization�, where, roughly speaking, one replaces
the coordinate rings by their integral closures, eliminating the codimension 1 singularities.
So for dimension 1, it eliminates all singularities. It doesn't seem to be that useful in higher
dimension.

6.2 Newton's method

Suppose we have a curve f(x, y) = 0 passing through (0, 0). The key point is to expand y as a
Puiseux series in x; these were �rst invented by Newton. These are essentially Taylor series in
x1/N for some integer N .

Example 145. If for example y2 = x2 + x4, we have two branches y = x + ∗x2 + ∗x3 + · · · ,
y = −x+ · · · , so in this case the Puiseux series is just a Taylor series.

If for example y2 = x3 + x4, we have y = (x3 + x4)1/2 = x3/2(1 + x)1/2, which gives a Taylor
series in x1/2.

In general, one �nds the Newton polygon. Consider for example y5 + 7x3y2 + 6x5y4 + 7x6 = 0.
One looks at which monomials xayb occur, and plots the values of (a, b) ∈ Z2. One takes the
convex hull of these points together with (∞, 0) and (0,∞) as in Fig. 27. We assume that the
curve f(x, y) = 0 is irreducible, so it contains monomials yb and xa for some a, b (otherwise it would
be divisible by x or y), so the Newton polygon contains some points on the y-axis and x-axis.

Figure 27: The Newton polygon of y5 + 7x3y2 + 6x5y4 + 7x6 = 0 consists of part of the �rst
quadrant. The leading edge is illustrated with the dotted line.

We now use Newton's method of the rotating ruler: Rotate a ruler through the point (0, b) until
it hits some point; this gives the edge of steepest slope of the Newton polygon. On the resulting
line of steepest slope, there will be at least 2 points, and all the points in the Newton polygon are
on one side of the line � see Fig. 27.

Now, look at the piece of f(x, y) on this line. In other words, we can choose a grading of
polynomials in x, y, deg(x) = m, deg(y) = n, such that the monomials on the line all have the
same degree, and the slope of the line is −m/n (or maybe −n/m). So we are looking at the terms
of smallest degree for this grading.
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Example 146. Consider y5 +7y4x2 +6y3 +x4 +y3x7 +y7x3 +x18. In this case the terms of minimal
degree will be the �rst three, y5 + 7y4x2 + 6y3x4.

We want to make changes of variables in x, y to simplify the Newton polygon. This can mean
two things: We will either reduce the smallest power of y (if we can get a y1, the curve is non-
singular, and y is a Taylor series in x), or we reduce the slope of the leading line from before. To do
this, we look at the terms of smallest degree. This is a homogeneous polynomial in x, y for suitable
weights of x, y (for instance, in the example above, the degree of y is 2, and the degree of x is 1).
Look at the roots of this homogeneous polynomial; there are two cases: (1) Not all roots are equal.
(2) All roots are the same. If not all the roots are the same, we have (ya − α1x

b)(ya − α2x
b) · · · ,

where not all the αi are the same. We then make a substitution, say y 7→ y − α1x
b/a, which

will reduce the minimum power of y occuring. This can only happen a �nite number of times. If
all the roots are equal, (ya − αxb)N , and we substitute y 7→ y − (αxb)1/a, the power of y does
not decrease, but the absolute value of the slope of the leading edge does. This can happen an
in�nite number of times, as the slope of the leading edge is rational. But it does at least converge
to a formal Puiseux series for y =

∑
anx

n/N . (A slight variation of this actually shows that the
�eld of formal Puiseux�Laurent series, series of the form

∑
n≥−k anx

n/N for some integer N , is
algebraically closed. To prove this, one uses a similar argument, except that f is allowed to be a
Puiseux series in x rather than just a polynomial. This is a rare example of an explicit algebraically
closed �eld other than C. It also shows that the �eld of Laurent series

∑
n≥−k anx

n (an ∈ C) is a
quasi-�nite �eld � this is, a �eld that has a unique extension of degree n for any n. For example,
for �nite �elds Fq, there are unique extensions Fqn of degree n; this means that one can compute

the Galois group of its algebraic closure, lim←−n Z/nZ = Ẑ.)

Figure 28: Seperating out the branches of a singularity.

Newton's algorithm is the following: Given a polynomial f(x, y), it will produce a root the
form y =

∑
n≥0 anx

n/N for some N . So what does this have to do with resolution of singularities?
Suppose we have a polynomial f(x, y) = 0 singular at 0. Newton's algorithm will then �seperate
out� the various analytic branches (Fig. 28). Each analytic branch looks like y =

∑
anx

n/N

or yN =
∑
bnx

n. However, di�erent analytic branches may be the same algebraic branch. For
example, if y2 = x2 + x3 has two analytic branches at the origin, but there is only one algebraic
branch.

So, to resolve singularities, we want to �nd invariants of a singularity, that are improved by
blowing up. Suitable invariants are:

(1) The multiplicity of the singularity.

(2) The minimal value of the leading slope of the Newton polygon taken over all choices of local
analytic coordinates, such that yN is the term of minimal degree, and there are no terms of
the form yN−1xm for any m; such terms can be eliminated in characteristic 0 by changing
variable y 7→ y + power series in x, since then yN 7→ yN + N(yN−1x) + · · · . (For curves
this restriction to characteristic 0 is not hard to avoid, but in higher dimensions, a similar
problem is the obstruction to resolution of singularities in characteristic > 0.)

We consider now the e�ect of blowing up on these invariants. This depends as usual on the roots
of the polynomial of terms of smallest degree: If the roots are not all the same, the multiplicity
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of the singularity is reduced (corresponding to what happens in Newton's algorithm) � this only
happens a �nite number of times. When all the roots are the same, then the absolute value of the
slope of the leading edge is less than 1, as the coe�cient of yN−1x = 0. Then, blowing up increases
the absolute value of the slope of the leading edge. If the absolute value of the slope is > 1, the
multiplicity is reduced (without this condition, the coe�cients of yN−1xm vanish, and we end up
going in circles).

23rd lecture, November 16 2010

7 Hilbert polynomials

Today we will consider Hilbert polynomials. The basic problem is the following: Suppose we have
a module M over some ring, say k[x1, . . . , xm]; how do we measure the �size� of M? We do this by
grading M , writingM = M0⊕M1⊕M2⊕· · · and grading k[x1, . . . , xm] by letting, say, deg xi = 1.

Assume that M is a graded module over a graded ring k[x1, . . . , xm]. This means that
deg(pm) = deg p+ degm, where m ∈Mi, and p ∈ k[x1, . . . , xm]. The idea is to look at the growth
of dim(Mi) (this is �nite-dimensional if M is a �nitely generated module over k[x1, . . . , xm]). We
do this by encoding dim(Mi) as a power series. Put

fM (t) =
∑
n

tn dim(Mn).

Hilbert's key discovery was that fm(t) is a power series of a rational function. The only pole is
at t = 1. This gives us tight control over the growth of dimMi, as the rational function can be
speci�ed by a �nite amount of information. This can be proven by induction on the number of
generators of k[x1, . . . , xm] = R. Suppose r is one of the generators of the ring R. Look at the
sequence

0→ ker(r)→M →M(1)→M(1)/rM(1)→ 0,

where M(1) is M with the grading shifted by 1, and the third map is multiplication by r. This is
an exact sequence of graded modules. We now use the following fact: If

0→ V0 → V1 → · · · → Vk → 0

is an exact sequence of vector spaces, then dim(V0)−dim(V1)+dim(V2)−· · · = 0. (This is a special
case: The Euler characteristic of a complex is the Euler characteristic of the homology.) It can be
proved directly by induction on the number k of vector spaces in the sequence. Applying this to
our sequence above, we get that fker(r) − fM + fM(1) − fM(1)/rM(1) = 0. We consider the various
bits: fker(r) is a graded module over the ring with < m generators, so it is rational by induction
on m. Also, fM(1) di�ers from fM by a factor of x, and so does fM(1)/rM(1) [?]. So we �nd that
(1 − t)fM is a rational function, and so fM is a rational function. By induction, the only poles
are at t = 1. (A slight generalization is this: In the previous case we assume that all generators
have degree 1. If more generally the generators have degrees ni, then we get a rational function
(1− tni)fM , so fM can have poles at the zeros of (1− tn1)(1− tn2) · · · .)

An immediate consequence is that for n su�ciently large, dim(Mn) is a polynomial in n. This
follows, since it is true for the coe�cients of any rational function with poles only at t = 1: We
can write fM (t) as a Laurent series

b−k
(1− t)k

+
b1−k

(1− t)k−1
+ · · ·+ b0 + b1(1− t) + · · ·+ b∗(1− t)∗,
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and the coe�cient of tn is 0 for n� 0. We have

1

1− t
= 1 + t+ t2 + · · ·

1

(1− t)2
= 1 + 2t+ 3t2 + · · ·

1

(1− t)3
= 1 + 3t+ 6t2 + 10t3 + · · · ,

and here the coe�cients for postive powers of t are given by polynomials (note that they come
from Pascal's triangle).

The polynomial dim(Mn) (for n large) is called a Hilbert polynomial P (t). These polynomials
have the following special property: P (n) is integer (that is, it takes integer values on integers) for
n � 0 (so dim(Mn) is integer). So we can ask the following: What polynomials are non-negative
integers for n a large integer? This is the case if all coe�cients of p are integers, but this does

not give all cases. For example, t(t−1)
2 = − t

2 + t2

2 is an integer for all integers t. In general, that
p takes integer values on the integers is equivalent to p being an integral linear combination of

expressions of the form t(t−1)···(t−(n−1))
n! (note that these are all binomial coe�cients, and therefore

integral linear combination of these terms gives an integer polynomial). To prove this, note that
the expression above is 0 at 0, . . . , n−1 and 1 at n. Suppose that p is integral on integers. We want
to show that p is an integral combination of polynomials as above. First, change p to p−p(0) = p1,

which vanishes at 0. Now, change p1 to p1 − p1(1)

(
t
1

)
= p2, which vanishes at 0,1. Carry on like

this to �nd p minus some linear combination of

(
t
0

)
,

(
t
1

)
,

(
t
2

)
, . . . ,

(
t
n

)
vanishing at 0, 1, . . . , n,

where n = deg(p). So we have a polynomial of degree n vanishing at n + 1 points 0, . . . , n, so it

is 0. Thus p is a linear combination of

(
t
0

)
,

(
t
1

)
,

(
t
2

)
, . . . ,

(
t
n

)
with integer coe�cients. This

ends the proof.
In particular, suppose p is integral for integral t, then p = an

n! t
n + (smaller degree), where an is

an integer. The most important invariants of the Hilbert polynomial are (1) its degree n and (2)
its leading coe�cient times n!. These are both integers ≥ 0. (The remaining coe�cients tend to
depend on the choice of grading.)

An application of this is that we can de�ne the dimension of Noetherian local rings.

(1) Suppose R is a Noetherian local ring with maximal ideal m (for instance, it might be the
coordinate ring of some variety localized at the point, so the dimension would be the di-
mension of the variety at that point). We will turn it into a graded ring. Filter it, taking
R/m⊕m/m2 ⊕m2/m3 ⊕ · · · . Here R/m is a �eld k, and the other terms are �nite dimen-
sional vector spaces over k, generated by the degree 1 elements. It is a module over itself,
so we can take the Hilbert polynomial of it. A Hilbert polynomial measures the growth of
dim(mn) which you can think of as �how many functions there are on the variety�. In fact,
dim(R) is equal to the degree of the Hilbert polynomial of dim(mn), which is also 1 plus the
degree of the Hilbert polynomial of mn/mn+1. There are also other de�nitions of dimensions
of Noetherian local rings.

(2) Another one is as the supremum of lengths of chains of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn
(where pi 6= pi+1).

(3) You can also de�ne it as the smallest size of a system of parameters: The set of elements of
m generating an ideal of �nite codimension (which may be less than the minimum of number
of generators of m).

The proofs of their equivalence is quite hard commutative algebra. The de�nition in terms of
Hilbert polynomials seems less intuitive but is easier to calculate than the two others.
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As an example, we consider the degree of a projective variety. An informal de�nition is, that
for a hypersurface, the degree should be the number of intersections with a �generic� line. If V
has codimension r in Pn, then deg(V ) is the number of intersection points of V with a generic
linear subvariety of dimension r. We need the word �generic�: For example for the cubic surface
w3 + x3 + y3 + z3 = 0, most lines intersect in 3 points, while some lines lie on the surface and
intersect it in an in�nite number of points. This de�nition of degree is intuitive and geometric,
but one runs into technical di�culties.

Instead, we give a de�nition of degree in terms of Hilbert polynomials. Suppose I is a graded
ideal of a variety V ⊆ Pn, I ⊆ k[x0, . . . , xn] = R. Then M = R/I is a graded module over
k[x0, . . . , xn], dim(V ) is the degree of the Hilbert polynomial of M , and deg(M) is r! times the
leading coe�cient of the Hilbert polynomial, which as before is a positive integer.

Example 147. Consider projective space Pn. Here the coordinate ring is k[x0, . . . , xn] = R =

R0 ⊕ R1 ⊕ R2 ⊕ · · · . In the last expression, the dimensions are 1, n + 1,

(
(n+ 1)(n+ 2)

2

)
, and

so on. In general, Rk has dimension

(
(k + n)(k + n− 1) · · · (n+ 1)

k

)
. The Hilbert polynomial is(

k + n
n

)
= 1 · k

n

n! + lower order terms. We read o� that Pn has dimension n and degree 1.

Example 148. Consider a hypersurface of degree d in Pn, so consider f of degree d in k[x0, . . . , xn].
We have an exact sequence

0→ k[x0, . . . , xn]
f→ k[x0, . . . , xn]→ k[x0, . . . , xn]/(f)→ 0.

Multiplication by f raises the degrees by d. Here, the Hilbert polynomial is(
k + n
n

)
−
(
k + n− d

n

)
= d

kn−1

(n− 1)!
+ lower order terms.

So in this case, the hypersurface has dimension n− 1 and degree d the degree of the polynomial f
de�ning it.

Example 149. Consider a twisted cubic in P 3. This is de�ned by the ideal (wz−xy, x2−wy, y2−xz)
in k[w, x, y, z]. Then the graded coordinate ring of the twisted cubic is k[w, x, y, z]/(wz − xy, x2 −
wy, y2 − xz). By converting x2 → wy, y2 → xz, xy → wz, we can assume that we have ≤ 1 copy
of x or y. We have the following possible monomials in various degrees:

Degree 0 1 2 3
Polynomials 1 w, x, y, z w2, z2, wz, wx,wy, zx, zy w3, w2z, wz2, z3, . . .
Number of polynomials 1 4 7 10

In general, there are 3k1 + 1 polynomials of degree k. It follows that the twisted cubic has
dimension 1 and degree 3.

We can ask why the Hilbert polynomial is not always equal toMk; it turns out that dim(Mk) =
dimH0(O(M)(k)), where O(M)(k) is a certain sheaf on Pn associated to M . The Hilbert poly-
nomial is always the Euler characteristic of O(M)(k), given by an alternating sum of dimensions
of cohomology groups of the sheaf.

Example 150. The Euler characteristic χ of a variety can be de�ned as the constant term of the
Hilbert polynomial. For historical reasons, some people consider the arithmetic genus (−1)dim(χ−
1). As an example, we consider a plane curve of degree d. It is a degree d hypersurface in P 2,

so the Hilbert polynomial is

(
k + 2

2

)
−
(
k + 2− d

2

)
. The constant term is

(
2
2

)
−
(

2− d
2

)
=

1− (2−d)(1−d)
2 = χ, so the arithmetic genus is

1− χ =
(2− d)(1− d)

2
=

(d− 1)(d− 2)

2
,

which is the same as the topological genus for non-singular curves over C, explaining the name.
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The Hilbert polynomial is essentially the only discrete invariant of algebraic sets in Pn: Hartshorne
proved that 2 algebraic sets with the same Hilbert polynomial are in the same component of the
�Hilbert scheme�, so Hilbert polynomials roughly describe components of the Hilbert scheme (which
is where the name of Hilbert schemes come from).

24th lecture, November 18 2010

8 Sheaves and schemes

A scheme is a generalization of an algebraic set. As we have seen, a�ne algebraic sets correspond
to �nitely generated algebras over a �eld with no nilpotents. A projective algebraic set is a subset
of projective space covered by a�ne algebraic sets. Schemes are similar, but:

(1) We do not insist on �nite generation. For example, we could use k[x1, x2, . . . ] in in�nitely
many variables. These correspond roughly to in�nite-dimensional objects.

(2) They do not to be over a �eld. For instance we can work over Z. As an example, considering
xn + yn = zn one could ask for integral solutions rather than complex, and one would work
with Z[x, y, z]/(xn + yn − zn).

(3) The most dramatic change is that we allow nilpotents. One reason for this is that things
with nilpotents turn up naturally. As an example, consider the intersection of the parabola
y = x2 − a with the line y = 0. This intersection is an algebraic set consisting of the points
x = ±

√
a, which is 2 points if a 6= 0, and 1 if a = 0. We look at the coordinate ring of the

intersection: k[x, y]/(y, (x2 − a)) = k[x]/(x2 − a). If a 6= 0 this is k ⊕ k, and if a = 0 this is
k[x]/(x2), which is a 2-dimensional algebra over k with a nilpotent � the scheme keeps track
of this extra information. (Remark: One could consider superspaces. These are essentially
Z/2Z graded spaces: One works with elements in a ring R0⊕R1 which are supercommutative,
xy = (−1)deg x deg yyx, so if deg x = 1, we have x2 = −x2, and so x is nilpotent)

So, for a�ne schemes we consider all rings rather than rings �nitely generated over k with no
nilpotents. Similarly, general schemes are things that are covered by a�ne schemes � we don't
consider things embedded into say Pn. One could compare this to the modern de�nition of a
manifold: Previously, one considered manifolds as things embedded in Euclidean space, but this
embedding is usually irrelevant.

8.1 Sheaves

Sheaves were invented by Leray in the 1950s. They were initially used for smooth Hausdor�
manifolds and were introduced into algebraic geometry by Serre (in [Ser]). A key point is that
sheaves also work on non-Hausdor� spaces. Before introducing sheaves, we introduce presheaves.

As an example, take a topological space X. For each open set U let F (U) be the set of
continuous real functions on U . F is a basic example of a sheaf. We extract the key properties of
this example.

(1) For each U ⊆ V , we have a restriction map ρV U : F (V )→ F (U) such that ρUU is the identity
and ρVW ρUV = ρUW

This de�nes a presheaf : The data of a presheaf F is a set F (U) for every open U ⊆ X with a
map ρUV : F (U)→ F (V ) for V ⊆ U satisfying the above condition (1).

An alternative de�nition is the following: We form a category from X, letting the objects be
the open sets U ⊆ X with morphisms inclusions U ⊆ V (so there is one morphism U → V if
U ⊆ V and no morphisms otherwise). Then a presheaf is a contravariant functor F from this
category to the category of sets. We then have a set F (U) for each object U and a morphism of
sets ρUV : F (V )→ F (U) whenever we have an inclusion U → V . We can also de�ne a presheaf of
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�things�, whenever we are given a category of �things�. Important examples are sheaves of abelian
groups and sheaves of sets.

There are extra properties of a presheaf F of continuous functions of U ⊆ X.

(1) Suppose U is covered by sets {Ui}, then if ρUUi(f) = ρUUi(g) for all i, then f = g.

(2) Suppose that given fi ∈ F (Ui) and U =
⋃
Ui. Then, whenever ρUi,Ui∩Uj (fi) = ρUj ,Ui∩Uj (fj),

we can �nd f ∈ F (U) such that ρUUi(f) = fi. By the �rst condition, f is unique.

A sheaf is a pre-sheaf satisfying the above conditions (1) and (2).

Example 151. A basic example in algebraic geometry is the following: Let X be an algebraic set
or variety, and F (U) the regular functions on U .

Sheaves and presheaves form a category. Morphisms of sheaves/presheaves are the same as
natural transformations of functors: I.e. a morphism F → G is given by maps F (U)→ G(U) such
that the following diagram is commutative:

F (U) //

��

G(U)

��

F (V ) // G(V )

Sheaves form a (full) subcategory as presheaves.
Grothendieck's philosophy of sheaves is that sheaves over a space form a weak model of set

theory: Any �constructive� operation on sets should have an analogue for sheaves. Given sets
A,B, one can form a product A× B, a union A ∪ B, maps AB from B to A, the power set of A,
and so on. All of these have analogues for sheaves. In particular, we can de�ne rings, groups, etc.,
in the category of sheaves. Sheaves of abelian groups should then behave like abelian groups.

Example 152. Given abelian groups A,B, we can form A ⊕ B, A ⊗ B, Hom(A,B) and so on, so
there are similar operations for sheaves.

There are two important di�erences between sets and sheaves of sets though: The analogue
of the axiom of choice fails, and classical logic fails. Sheaves use �intuitionistic logic�. A more
technical way of saying this is that the category of sheaves form a topos. This also means that any
set theoretical proof that uses only intuitionistic logic has an analogue for sheaves.

Example 153. We could consider sheaves of continuous/smooth/regular/holomorphic functions on
topological spaces/manifolds/algebraic varieties/complex manifolds.

Example 154. Pick a group A and a point x in X. De�ne the skyscraper sheaf F by F (U) = A
if x ∈ U and F (U) = 0, if x 6= U . The picture is that we have s copy of the group A sitting over
the point x. This is a special case of something more general: Suppose Y → X is any continuous
map. Let F (U) consist of the sections of this map over U � this is a sheaf as well. In fact we can
get all sheaves like this.

Example 155. Another example is the constant presheaf : Fix an abelian group A and let F (U) = A
for all U . This is usually not a sheaf. Similarly, let A be an abelian group with the discrete topology
and de�ne the constant sheaf by letting F (U) be the set of continuous functions from U to A. This
is the same as the constant presheaf if U is connected, but in general the two are not the same.

The above example leads to the problem of turning a presheaf into a sheaf. First, you form the
étalé space of a presheaf: The �ber Fx of a point x is de�ned to be Fx = lim−→U3x F (U). Informally,

these are functions de�ned �near� x.

Example 156. If X = R and F is the sheaf of continuous functions, then the �ber at x is the set
of continuous functions de�ned near x with the relation that f ≡ g if f = g in a neighbrhood of x.

The étalé space is the union of the �bers over X. We put a (typically not Hausdor�) topology
on this: If f ∈ F (U), then f has an image in Fx for each x ∈ U , so we get a map from X to the
étalé space. The basis of open sets is given by the open sets U under these maps. We de�ne a
sheaf F+ letting F+(U) be the sections of the étalé space over U .
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Exercise 157. Do the above construction for F the constant presheaf, and show that the result
is the constant sheaf. Show that if F is the sheaf of continuous functions on R, then the étalé
space is not Hausdor�. Show that if F is the holomorphic functions on C, then the étalé space is
Hausdor�.

If one applies the above construction to a sheaf, the result will be the same sheaf as one begins
with, up to isomorphism, and one can think of étalé spaces as giving a canonical retraction of
presheaves to sheaves.

Sheaves generalize vector bundles. For example, Suppose X is a smooth manifold. It has a
tangent bundle TX assigning to each point the tangent space. We get a sheaf of tangent vector
�elds, by putting F (U) equal to the vector �elds on U . Vector bundles are not general enough for
our purpose (for example, vector bundles form an additive category, which is not abelian, while
sheaves form an abelian category. The problem is illustrated by the following example).

Example 158. Take X to be the real line. Let V be the vector bundle X × R → X. Sections of
the vector bundle is simply real functions. Now look at V

x→ V given by multiplication by x ∈ R.
What is the kernel and cokernel of this map? The kernel is easy enough: If xf = 0 then f = 0, so
the kernel is 0. The cokernel has �ber 0 at x 6= 0, so the cokernel as a vector bundle would have
to be 0. So from the point of view of vector bundles, V

x→ V has zero kernel and co-kernel, but it
is not an isomorphism. For example, the section 1 of V is not in the image of x, so vector bundles
do not form an abelian category.

But for sheaves, the map V
x→ V has a non-zero cokernel. Notice that the quotient F0/xF0 �

i.e. the smooth functions near zero modulo the smooth functions vanishing at 0 � is nothing but
the skyscraper sheaf at 0.

25th lecture, November 23rd 2010

8.2 The spectrum of a ring

Schemes were invented in the 1950's, after much experimentation by Weil, Zariski, Chevalley,
and Grothendieck, to �nd a replacement for the inadequate notion of a projective variety. Some
propositions were Abstract varieties (by Weil) and Zariski surfaces (confusingly called Riemann
surfaces by Zariski), and �nally schemes. They were named by Chevalley. There are various
generalizations, to for example algebraic spaces (introduced by Artin), toposes (by Grothendieck)
and stacks (also by Grothendieck).

A�ne schemes are locally ringed spaces: We need to construct the underlying space, construct a
sheaf of rings on it, and �gure out what �locally� means. A�ne schemes correspond to commutative
rings. For a commutative ring R we will de�ne an a�ne scheme called the spectrum, Spec(R),
of R. The reason for the name �spectrum� is the following. Remember that the spectrum of an
operator is the set of its eigenvalues. Let the operator be A acting on (say) a �nite dimensional
complex vector V , so the spectrum is the set of values λ ∈ C with Av = λv for some v ∈ V , v 6= 0.
In our case, look at the commutative ring C[A] consisting of all operators that are polynomials
in A. This is some �nite dimensional commutative algebra. Notice now that the spectrum of A
corresponds to the maximal ideals of C[A]. If we have an eigenvector v we get a maximal ideal I
of C[A] equal to the elements that vanish on v, and we get a homomorphism C[A] → C mapping
p to the eigenvalue of p(A) acting on V .

This is extended by Gel'fand in the theory of commutative C∗-algebras. SupposeX is a compact
Hausdor� space. Look at the ring R = C(X) of continuous functions on X. We can then ask how
to reconstruct X from R. The answer is that X is the set of maximal ideals of the ring R. A point
x ∈ X gives a maximal ideal by associating to it the maximal ideal of functions vanishing at x. We
have a topology on the space of maximal ideals: If f ∈ C(X), then the maximal ideals containing
f form a closed set (which we can think of as the zeros of f). The topology is generated by the
complements of these. So, for each f we have an open set Uf of the maximal ideals not containing
f . Here, we get a correspondence between compact Hausdor� spaces X with commutative C∗-
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algebras. associating to a C∗-algebra R the set Specm(R) of its maximal ideals, and going in the
other direction by taking continuous functions.

The idea in algebraic geometry is to do this construction for commutative rings rather than
C∗-algebras. By Hilbert's Nullstellensatz, the points of a variety V correspond to the maximal
ideals of the coordinate ring of V , so varieties correspond to �nitely generated integral domains
over k. Here, given a �nitely generated integral domain R, we associate to it the set Specm(R) of
its maximal ideals, and we can go the other way by taking coordinate rings. A homomorphism
f : R → S between commutative C∗-algebras induces a homeomorphism Specm(S) → Specm(R).
For general rings, this fails: Suppose f : R → S is a ring homomorphism, and de�ne F ∗ :
Specm(S)→ Specm(R) by letting f∗(I) be the inverse image of I, where I is a maximal ideal of S.
We have the following problem: The inverse image of a maximal ideal need not be maximal. For
example, for f : Z → Q, the pre-image of the maximal ideal (0) in Q is not maximal in Z. Note
that a maximal ideal S corresponds to a homomorphism from S onto a �eld k, and the composition
R → S → k need not be onto, but its image is certainly an integral domain. So while the inverse
image of a maximal ideal need not be maximal, but it is prime, and the inverse image of a prime
ideal is always prime, so this indicates that instead of using maximal ideals, we should use prime
ideals.

De�nition 159. The points of Spec(R) correspond to prime ideals of R. Its topology is given
by copying the de�nition of the topology on Specm C[X]: The topology has a basis of open sets
D(f) = Uf , the set of prime ideals not containing f (for f ∈ R). (Think of f as a �function� on
Spec(R), and Uf the points where �f 6= 0�.)

A key idea is to ignore all open sets not of the formD(f), which will often simplify constructions.

Example 160. For R a �eld k the spectrum is just a point.

Example 161. If R is Z, it has prime ideals (0), (2), (3), . . . , where all but the �rst of these ideals
are maximal. We can �nd the closed sets. If f ∈ Z, f 6= 0, then D(f) is the set of prime ideals
not containing f , which is the set (0) ∪ (p) for p - f , which is the complement of any �nite set
of (2), (3), (5), . . . . Notice that this is not Hausdor�: Any 2 non-empty open sets intersect. Even
worse, it has a non-closed point, (0).

Exercise 162. The closed points of Spec(R) correspond to maximal ideals, so all the extra non-
maximal prime ideals are non-closed.

Example 163. Let R = C(X) be the set of continuous functions on a compact Hausdor� space.
The closed points of Spec(R) are all the points of X. The non-closed points are weird; they involve
ultra�lters. (The moral of this is example is that you shouldn't mix analysis and algebraic geometry
too much.)

Example 164. Let R be the ring C[x] of polynomials in x. This has maximal ideals the points of
A1. There is just one non-maximal prime ideal, (0) (in general, this occurs for any principal ideal
domain). This looks like a copy of C (with the Zariski topology) together with a dense generic
point (0).

Example 165. Consider now C[x, y]. Prime ideals in this case are points (x, y) (giving maximal
ideals), ideals (f), for f irreducible, and (0).

Example 166. Consider a discrete valuation ring such as Z(p), of all rational numbers m/n with
p 6| n, or the ring k[[x]] of formal power series in x, or Zp the p-adic numbers. In each of these cases
there is just one non-zero prime p, and every element is a unit times pn for n = 0, 1, 2, . . . .

So, there are just 2 prime ideals, the maximal ideal (p) and the non-maximal (0). Here the
topology consists of 3 open sets: ∅, {(0), (p)}, and {(0)}, which is the �Kuratowski topology� of a
2 point set.

Example 167. Consider SpecZ[x]. First, notice that the map Z → Z[x] gives a map SpecZ[x] →
SpecZ, and we know what SpecZ is. We can analyze SpecZ[x] by looking at the �bers of this
map. In other words, we �nd the prime ideals whose intersection with Z is (2), (3), (5), . . . , (0).
Consider �rst the �ber at (0): The prime ideals of Z[x] whose intersection with Z is (0) are the
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prime ideals of Q[x], which is a discrete valuation ring, so the prime ideals are (0), and (f) for
f ∈ Z[x] irreducible. We can think of this as the orbit of algebraic numbers under Gal(Q̄/Q). So,
just to describe the �ber over (0) we need the theory of algebraic numbers. Next, consider the �ber
over (p). These are prime ideals of Z[x] containing p ∈ Z. These are the same as the prime ideals
of Fp[x]. Again, this is a discrete valuation ring, so prime ideals are (0) and orbits of F̄p under
Gal(F̄p/Fp). These correspond to irreducible polynomials of Fp. One then goes on to considering
the closures of points of SpecZ[X]. It turns out that these closures are 1-dimensional subspaces
of SpecZ[X] at generic points. A natural question then is where these 1-dimensional subspaces
intersect: For example, the closures of (x2 + 1) and (x− 5) intersect at two points, so we want to
�nd all prime ideals containing x − 5, x2 + 1. We see that x = 5, x2 + 1 = 0 implies that 26 = 0,
so we must be working modulo 2 or 13, and the ideals are (2, x− 1), (13, x− 5). The point is that
one should think of SpecZ[x] as being similar to a 2-dimensional variety.

26th lecture, November 30 2010

We begin with a strange example of an a�ne scheme.

Example 168. We consider Nagata's counterexample to almost everything: This is an in�nite di-
mensional Noetherian scheme. Take the ring k[x1, x2, . . . ] and look at prime ideals (x1), (x2, x3), (x4, x5, x6), . . . ,
and invert everything not in one of these ideals. Call the result R. The ideals above then become
maximal ideals of R. Any prime ideal is generated by irreducibles, so by elements in just one of
the ideals (x1), (x2, x3), . . . . So all prime ideals are �nitely generated, and by a theorem by Cohen
this implies that all ideals are �nitely generated, so R is Noetherian. On the other hand, it is
in�nite dimensional, as it contains arbitrarily long chains of prime ideals, e.g. (x2) ⊆ (x2, x3),
(x4) ⊆ (x4, x5) ⊆ (x4, x5, x6) and so on.

There are lots of variations of this idea. One is a 1-dimensional integral domain with all points
singular: Take a subring of k[x1, . . . ] generated by x2

i , x
3
i for all i. Again, invert everything not in

of the ideals (x2
i , x

3
i ). This forces (x2

i , x
3
i ) to be the maximal ideals. (But all local rings at these

points are singular: They look like the local ring of a cusp x2 = y3 over a �eld of ∞ transcendence
degree.)

So the main problem is how to avoid examples like the above ones. We want to �nd a de�nition
of a �nice� ring that includes all geometric examples and excludes all �pathological� examples. One
possible answer (by Grothendieck) is the concept of an excellent ring, which we won't discuss.

We consider now some basic properties of Spec(k).

(1) Every irreducible closed set is the closure of a unique point: If S is a closed set of prime
ideals, then it is a set of prime ideals containing their intersection I. If I is not prime, then
choose a, b /∈ I, a ∈ I, b ∈ I. Then S is the union of primes containing (I, a), and (I, b), so
S is not irreducible. If S is irreducible, it is the set of primes containing prime I, so it is the
closure of a point corresponding to I, and so irreducible closed subsets correspond to points.

(2) Spec(R) is always compact. This follows from the fact that if some set of elements generate
the unit ideal, then some �nite subset generates the unit ideal.

8.3 Schemes

Now, we will make Spec(R) into a ringed space. That is, for every open subset, we want to de�ne
a ring O(U). To do this, we �rst recall the localization RS of a ring R at a subset S. Informally
we just invert all elements of S. Consider the following universal property: Suppose R has a
homomorphism to a ring T such that the image of all elements of S are invertible. Then the
ring RS is de�ned by the property that for any R → RS there exists a map RS → T forming a
commutative diagram
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R
f

//

  A
AA

AA
AA

A T

RS

>>

So, RS is a �universal ring� with everything in S invertible. The existence is obvious: We could

simply take R[t1,t2,... ]
s1t1=1,s2t2=1,... for all s1, s2, · · · ∈ S. This construction however, is useless: We have

no control over the ring, and for example it is hard to see, what the kernel of R→ RS is.
To obtain a better construction, we mimic the construction of Q from Z, noting that Q is the

localization at Z at all non-zero integers. Recall that Q = Z×Z
(r1,s1)≡(r2,s2) if s1r2=s2r1

. We can then

de�ne +, · · · ,− as always, letting (r1, s1) + (r2, s2) = (r1s2 + r2s1, s1s2) and (r1, s1)(r2, s2) =
(r1r2, s1s2).

Trying to copy this for any subset S of a ring R, we run into problems:

(1) The relation ≡ from above will not de�ne an equivalence relation. This we can �x by
demanding that S is closed under multiplication (for exmaple, we can replace S by the set
of �nite products, and 1)

(2) S might have zero divisors. This we can �x by modifying≡, and saying that (r1, s1) ≡ (r2, s2),
if s(r1s2 − r2s1) = 0 for some s ∈ S.

A check shows that the equivalence classes form a ring RS with the universal property. One key
advantage is that we can describe the kernel of R→ RS . This turns out to consist of all elements
r with rs = 0 for some s ∈ S. If R is an integral domain and 0 /∈ S, then RS is just the subring of
the quotient �eld generated by s−1 for s ∈ S.

We are now in a position to d�ne the ringed space structure. Recall that Spec(R) has a basis for
the topology consisting of sets D(f) for f ∈ R. Here D(f) is the set of prime ideals not containing
f . We think of f as a �function� on Spec(R), and D(f) as the complement of the zeros of f . We
put O(D(f)) = Rf = R[f−1]. That is, functions regular except at zeros of f . For an arbitrary set
U , we don't really care: The key point in working with schemes is to ignore all open sets not of
the form Df . We can do this because of the following.

Lemma 169. Sheaves O can be de�ned on a space X by de�ned O(U) for a base of the topology,
and checking the covering for condition for covers of Ui in the base by other sets of the base.

The point is that if we know the sheaf O(U) for U in the base, this determines it on any open set
V , as we can cover V by basis elements: We de�ne O(V ) to be the elements of O(U1)×O(U2)×· · ·
that agree on Ui ∩ Uj . This will be well-de�ned and independent of the cover of V .

So to show we have a sheaf on Spec(R), we just need to check the sheaf condition for covers of
D(f) by D(f1), D(f2), . . . . We can do this as follows: The �rst step is to replace R by Rf , so we
may assume f = 1. Next we notice that Spec(R) is covered by the open sets D(f1), D(f2), . . . . As
before this means that 1 ∈ (f1, f2, . . . ), so 1 ∈ (f1, f2, . . . , fn) for some n, and so we can assume
that the number of fi in the covering is �nite. (Notice that we almost did this for a�ne varieties,
the only di�erence being that our ring in question here might have zero divisors.) We need to
check that if r ∈ R is 0 on each D(fi), then r = 0. If r = 0 in D(fi), then (fi)

nir = 0 for some
ni: This is true since an element x is 0 in D(fi) if and only if x is killed by some element of the
semigroup generated by fi. As Rfi = Rfnii

, we can replace fi by f
ni
i and assume that fir = 0.

Since f1, . . . fn were generators, a1f1 + · · ·+ anfn = 1 for some ai, r = a1f1r + · · ·+ anfnr = 0.
The hard part is the following: Suppose we are given ri/f

ni
i ∈ Rfi = D(fi) that are compatible,

ri/f
ni
i = rj/f

nj
j in Rfifj = D(fi) ∩D(fj). We then want to �nd r ∈ R so that r = ri/f

ni
i in Rfi .

To do this, we want to solve the following problem. Suppose given ai, fi with a1f1 + · · ·+anfn = 1,
and ri/f

ni
i with (fifj)

mij (rif
nj
j − rjf

ni
i ) = 0 for some mij . We want to show that we can �nd

r with fkii (fnii r − ri) = 0 for some ki. The relations are a bit of a mess, and the �rst thing we
do is to simplify them. The �rst simpli�cation is given by replacing the fi by some high power:
If (fi, f2, . . . , fn) = 1, then (f t11 , . . . , f

tn
n ) = 1 for any t1, t2, . . . , tn. Thus we have reduced the

problem solve the following: Suppose a1f1 + · · ·+ anfn = 1, and fifj(rifj − rjfi) = 0, we want to
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�nd r with fi(fir− ri) = 0. Replace rifi by si, so sif
2
j = sjf

2
i , and we want to solve f2

i r = si. We

replace f2
i by gi, so the equations become sigj = sjgi, and b1g1 +b2g2 + · · ·+bngn = 1, and we want

to solve gir = si. Now, we can just write down a solution. We see that b1g1r+ · · ·+ bngnr = r, so
r = b1s1 + · · ·+ bnsn is the only possibility for r, so de�ne r to be b1s1 + · · ·+ bnsn, and we need
to check that gir = si. Now

gir = b1s1gi + · · · = b1g1si + · · · = (b1g1 + · · · )si = si.

In conclusion, putting O(Df ) = Rf de�nes a unique sheaf of rings on Spec(R). The stalk of
this sheaf O at a point p by de�nition is the direct limit of O(U), U containing p, and we might
as well consider the direct limit of O(Df ), Df containing p. This is nothing but RS , where S is
the set of all elements not in p, which happens to be also denoted by Rp.

The easy way to do this construction is to start with O(Df ) = Rf and calculate the stalk at
the point Rp (unlike in [Har], where instead we de�ne the stalk at a point and calculate O(Df )
from this).

De�nition 170. A general scheme is a (locally) ringed space looking locally like an a�ne scheme
(which we can think of as giving �local coordinates�).

We can compare this de�nition to that of a smooth manifold, which is a ringed space locally
isomorphic to a ringed space of smooth functions on Rn.

Morphisms of schemes are not morphisms of the underlying ringed space. Schemes are locally
ringed spaces in the sense that the stalk of any point is a local ring, meaning that it has a unique
maximal ideal. Informally, this maximal ideal is informally the set of functions vanishing at this
point. So, instead, morphisms of schemes are morphisms of locally ringed spaces. Let us de�ne
these terms.

We will de�ne a morphism of a ringed space. First look at f : X → Y for topological spaces
X and Y , and take �rst the sheaves of continuous real functions on X and Y . If U is any open
subset of Y , then f−1(U) is an open subset of X, and if g is a function, then g ◦ f is a function
on f−1(U), so we have a morphism of rings from O(U) to O(f−1U). We continue from here next
time, but rather obviously, a morphism of ringed spaces will be a morphism between these spaces.

27th lecture, December 2 2010

Last lecture we were discussing morphisms of schemes. Recall of schemes are special cases of ringed
spaces, and we will de�ne morphisms of these. Special cases of ringed spaces are locally ringed
spaces, which also have a sense of morphisms. Note that a morphism A→ B of ringed spaces A,B
need not be a morphism of locally ringed spaces, even if A and B are locally ringed spaces. In
terms of category theory, the locally ringed spaces form a non-full subcategory of ringed spaces.
Keeping in mind the example of the set of continuous functions on a space, we come up with the
following de�nition:

De�nition 171. A morphism of ringed spaces f : X → Y satis�es:

(1) It is a continuous map between the underlying topological spaces.

(2) For each open set U ⊆ Y , f−1(U) is open in X. We should have a homomorphism of rings
O(U)→ O(f−1(U)) for all open U ⊆ Y . For V ⊂ U we have a commutative diagram

O(U) //

��

O(f−1(U))

��

O(V ) // O(f−1(V ))

We consider now locally ringed spaces. The idea is that a locally ringed space has a concept
of �vanishing at a point�. For example, if p ∈ X, one can look at all functions de�ned near p,
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i.e. limU3pO(U). So this ring, Op, is a local ring, where the maximal ideal can be thought of
as �functions as vanishing at p�. So suppose f : X → Y is a continuous map, and suppose g is
a real function on Y vanishing at y ∈ Y . Then g ◦ f vanishing at all points with image y under
f . In terms of local rings we have that if f : x 7→ y, we get an induced map between local rings
Oy → Ox. The extra condition we need in the de�nition of morphisms of locally ringed spaces is
that this induced map should take the maximal ideal of Oy to the maximal ideal of Ox.
Example 172. The following is an example of a morphism of ringed spaces between locally ringed
spaces that is not a morphism of locally ringed spaces.

Take a discrete valuation ring. For example the set Z(p) of all rationals m/n where p 6| n.
This has 2 prime ideals: The maximal ideal (p) which is closed in Spec(Z(p)) and (0) which is
not maximal and an open point. Let Y = Spec(Z(p)) be the space of these two points. Let
X = Spec(Q), which is just a point. We will de�ne a morphism of ringed spaces f : X → Y .
The image of X is the closed point (p) of Y . Suppose U is open, containing the image of X, say
U = (p). We want a map O(U) → O(f−1(U)) = O(X) = Q. We de�ne this to be the map
O(U)→ Z(p) → Q, where the last map is the injection. Now Z(p) is the local ring at (p), and Q is
the local ring of (0) in X. But now, the maximal ideal of Z(p) does not map to the maximal ideal
of Q.

There is a morphism (of locally ringed spaces) from Spec(Q) to Spec(Z(p)). In general, mor-
phisms Spec(R) → Spec(S) correspond exactly to ring homomorphisms S → R, as we will see
below. So we want a morphism g : Z(p) → Q, where we just use the obvious injection. On the
level of locally ringed spaces, we have a map Spec(Q)→ Spec(Z(p)) mapping (0) 7→ g−1(0) = (0),
so the morphism takes (0) to the open point of Spec(Z(p)).

For rings R,S, there is a correspondence between ring homomorphisms R→ S and morphisms
of locally ringed spaces Spec(S)→ Spec(R). The corresponds to the fact that Spec is functor from
the rings to ringed spaces. The inverse is given by the fact that R = O(Spec(R))→ O(Spec(S)) =
S de�nes a morphism R→ S. One should check that this de�nes a categorical isomorphisms.

Remark that Spec(R) is a sort of �universal� locally ringed space generated by R. Morphisms
O(X) → R corresponds exactly to morphisms Spec(R) → X (or maybe the other way around),
so Spec is an adjoint functor to O, and by category theory, there is a unique such one, up to
isomorphism (see Fig. 29).

Figure 29: The functor Spec as an adjoint to O.

Example 173. We will construct the scheme of a graded ring. So recall that a scheme is a locally
ringed space locally isomorphic to a�ne schemes (which we think of as coordinate charts). We can
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constructs manifolds by gluing together open sets in Rn, and we do the same for schemes: We glue
together a�ne schemes pretty much the same way.

Recall �rst the usual construction of Pn from k[x0, . . . , xn]: Pn is the union of n+1 copies of An-
These copies of a�ne space has coordinate rings k[x0, . . . , xi, xi+1, . . . , xn] = k[x0, . . . , xn][x−1

i ]0,
where the 0 denotes the degree 0 part. We will now glue these together. These n copies are subsets
Dxi of (x0 : · · · : xn) with xi 6= 0. We glue them together along Dxi ∩ Dxj which is the set of

points with xi, xj 6= 0. The coordinate ring of Dxi ∩Dxj is k[x0, dots, xn][x−1
i , x−1

j ]0. Now Pn is
the union of Dxi glued along Dxi ∩Dxj .

Now let R = R0 ⊕R1 ⊕ · · · be any graded ring. Let f be any homogeneous element of degree
greater than 0, and let R0

f be the degree 0 elements of Rf = R[f−1]. Put Df = Spec(R0
f ).

These are the analogues of the complements of a hypersurface of Pn. We now want to glue
these together. Notice for this that if f, g are homogeneous, then SpecR0

fg is an open subset of

Spec(R0
f ). (This is the analogue of saying that Spec k[x0, . . . , xn][x−1

i , x−1
j ]0 is an open subset of

Spec k[x0, . . . , xn][x−1
i ]0.) We glue together all a�ne subschemes Spec(R0

f ) for all homomorphisms

f (with degree greater than 0), by identifying Spec0
fg with an open subset of Spec(R0

f ).
This scheme is called Proj(R). What does the underlying space of Proj(R) look like? We �rst

�nd the space of Df = Spec(R0
f ). This is just the prime ideals of R0

f , which is the same as the
homogeneous prime ideals of Rf , which again is the same as the homogeneous prime ideals of R
not containing f . So the space of Proj(R) is equal to the union over f of the spaces Df , which is
then just the union over f of graded prime ideals not containing f . This on the other hand is the
set of graded prime ideals not containing the ideal (R1 ⊕R2 ⊕ · · · ).

Notice that this is very similar to the de�nition of projective space over a �eld, as Pn(k) is the
set of graded maximal ideals of k[x0, . . . , xn] not containing (x0, x1, . . . , xn) = R1 ⊕R2 ⊕ · · · .
Example 174. Look at the projective line over Z; that is, ProjZ[x, y]. We can ask the question:
What are points of the projective line with values in a ring R? That is, we want to �nd morphisms
from Spec(R) → Proj(Z[x, y]). First we do the case where R is a �eld k. In this case Spec(k) is
just a point, and O(pt) = k. Proj(Z[x, y]) is covered by 2 open sets, Dy = Spec(Z[x, y][y−1]0) =
Spec(Z[x]) and Dx = Spec(Z[x, y][x−1]0) = Spec(Z[y]). These we calculated previously. Since
Spec(k) is a point, the image is in either Dx or Dy, so we just look at morphisms Spec(k)→ Dx =
SpecZ[y]. As we saw earlier, these are just morphisms Z[y]→ k. The simply correspond to points
of k (which we can think of as the a�ne line over k). Similarly, morphisms Spec(k) → Dy also
correspond to A1(k). So, morphisms Spec(k)→ ProjZ[x, y] correspond to the union of 2 copies of
k glued over there intersection. This turns out to be P 1(k), the set of pairs (x : y), where x, y are
not both 0.

We consider now the case of a general ring R and ask for the set of morphisms Spec(R) →
ProjZ[x, y]. The following answers are wrong

(1) Pairs (x, y), x, y ∈ R, (x, y) 6= 0.

(2) Pairs (x, y) where x, y generate the unit ideal in R.

(3) Since P 1(k) = k ∪ k (glued along something), we could think that P 1(R) = R ∪ R (glued
along something), but this is also wrong (since Spec(R) is not necessarily a point as before
and might not have image contained completely in a covering set).

The correct answer is that the morphisms Spec(R)→ ProjZ[x, y] correspond to invertible modules
M over R having a pair of elements x, y ∈M that generate all stalks of M at a point of R, up to
isomorphism. Notice that this gives the right answer, when k is a �eld, as here invertible modules
are just 1-dimensional vector spaces.

Look at Z-valued points of the projective line, so we consider a morphism f : Spec(Z) →
ProjZ[x, y]. Again, SpecZ is not a point, so instead we consider f−1(Dx) and f−1(Dy). These must
be open sets covering Spec(Z). So to construct a morphism, we cover Spec(Z) by open sets U1, U2

and de�ne morphisms U1 → Dx, U2 → Dy and check that they agree on U1 ∩U2. The open sets of
SpecZ are the sets SpecZn = SpecZ[n−1], where n 6= 0. Here SpecZn is just the ideal (0) together
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with all primes not dividing n. So SpecZm and SpecZn cover SpecZ if (m,n) = 1. Morphisms
SpecZn → Dx = Spec(Z[y]) are now easy to �nd, as these are just morphisms Z[y] → Z[n−1].
These correspond to elements of Z[n−1]. Similarly morphisms SpecDy correspond to elements of
Z[m−1]. Working more with this, it should turn out that points correspond to pairs (x : y), x, y
coprime, up to multiplication by units.
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